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I. INTROI JCTION AND LITERATURE SURVEY

A. Introduction

Cavitation bubbles referred to herein are approximately spher-

ical cavities or voids within a body of liquid where the behavior of the

interface of a bubble is governed primarily but not completely by the

inertia and pressure of the liquid. The bubbles are formed by suitably

superheating the liquid by means of lowering the liquid static pressure

below the vapor pressure while the bulk liquid temperature remains essen-

tia/_ly constant. The behavior of the interface after the bubble is

formed and starts to collapse and the behavior of the liquid adjacent to

the interface are the main concerns here.

A cavitating venturi was used in the work described here, but

there are many other hydraulic machines where similar liquid conditions

exist _o form cavitating flows. Among these are pumps, high speed marine

propellers, spillways and turbines at dams, hydrofoils, etc. If other

conditions are considered, where bubbles are formed by superheating the

liquid by raising its temperature to the boiling point while maintain-

ing essentially constant pressure, then the applications when such con-

ditions occur become innumerable. Among these are the multitudes of

boiling heat transfer applications, where the analysis concerns single

vapor bubbles growing in liquid at saturation temperatures and pressures.

A third area of investigation involves single bubbles containing mostly

gas other than the vapor of the liquid in which they exist. Such bubbles

may grow from solutions of gas in liquid as in carbonated beverages or

by injection of gas bubbles into the liquid as in injection cooling used

in cryogenics work.

-1-
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Somesituations in which bubble behavior has recently become "

particularly important involve nuclear reactors and nuclear particle

research. The application of nuclear reactors to high temperature liquid

metal Rankine-cycle power plants for use in space has initiated consi-

derable effort in cavitation research in regard to both cavitation dsmage

in pumps, valves, etc. and cavitation effects upon performance of such

components. High power density reactor cores, especially in fast reac-

tors, require liquid metal coolants to effectively remove the heat. The

performance of liquid metals in such situations where cavitation might

occur cannot be reliably predicted on the basis of any known scaling laws,

and in high performance systems cavitation damagemay occur. For example,

in the Fermi sodium cooled f_st breeder reactor, pitting was observed on

the fuel element nozzle seats of the core support plate° A study indi-

cated that mis-seating of the nozzles permitted sodium flow across the

seats through a convergent-divergent passage as a venturi and th_ t, very

likely, cavitation damageoccurred.

The related areas of bubble dynamics in the nucleation and

growth of vapor and/or gas bubbles in radiation fields becomesimportant

when considering homogeneousliquid reactors and the evolution of radio-

lytic gases, especially during transient power operation. In water

cooled solid fuel reactors, the associated problem of bubble growth by

heat transfer at the fuel surface, with the attendant nuclear reactivity

effect, especially for rapid transient conditions, is closely related to

the pure cavitation bubble dynamics problems. The nucleation of bubbles

in a supersaturated liquid by passage of nuclear particles, as in the
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f_miliar bubble chamber, is also a related bubble-dynamics phenomenon.

While all these areas of bubble investigation are related, the relative

significance of the various physical parameters involved changes with

the application, and only those parameters important in single cavitation

bubbles will be considered here.

6

B. Historical Recognition of Cavitation

One of the first references to the fact that rotating hydraulic

machinery might promote localized low pressure regions, in water which

would result in voids or cavities was made by Leonhard Euler in 1754(1)

In 1894 Reynolds (2) considered the sound from a kettle of water as it

was heated to boiling. He concluded that the "harsh hiss" which occurs

at about 10°F below the boiling point comes from vapor bubbles which are

formed at the heated bottom kettle surface and then rise and collapse

suddenly in the colder water above. The hiss represents many bubbles,

each of which gives a sharp click when it collapses. He then presented

further evidence on the source of the hissing noise from pipes at room

temperature by demonstrating that water flowing through a small glass

tube venturi type restriction also produced a hissing. This noise coin-

cided with the appearance at the restriction of a white spot which Rey-

nolds attributed to a fog of air-vapor bubbles formed in the low pressure

region. The hissing he attributed to the collapse of these bubbles in

the higher pressure liquid downstream of the restriction.

In 1895 Sir John Thornycroft and S. W. Barnaby(3), in England,

presented a paper on the screw trials of the new torpedo-boat destroyer,

Daring, in which they postulated that the reason for her poor performance



was the inefficiency and loss of power caused by the formation of cavi-

ties in the water. Ro E. Froude initiated the use of the work "cavita-

tion" to describe this phenomenon° Barnaby(4) discussed the later trials

of the Daring in 1898o By increasing the blade surface area by 45 percent,

the samespeedcould be obtained as with the original screws, 24 knots,

but with the horsepower reduced from 3700 to 3050, indicating the magnitude

of the effect of cavitation on performance. At the samer.p.m. , the

speedwas increased to 28.4 knots°

In January, 1894, Sir Charles Parsons(5) formed a syndicate

to test applications of steam turbines to marine propulsion, and the

ship Turbinia was started° In a recent review of Parson's work,

Lo C. Burrill (6) indicates that even before the Turbinia was built, or

cavitation was recognized, Parsons anticipated that the high speed of the

turbine drive would require several fine pitched screws on a shaft in

order to obtain a sufficient blade area to provide the required thrust.

The initial trials of the Turbinia were unsuccessful in that power con-

sumption was excessive for the low ship speed attained° After consider-

able experimentation with various configurations_ Parsons decided on

three separate shafts each with three screws, and driven by three tur-

bineso In conjunction with these experimentsj Parsons ran a two inch

diameter model screw in water within a few degrees of boiling_ and

photographically observed the formation of cavities behind the leading

edge of the screw near the blade tip° At higher r.p_mo, a complete vapor

cavity was formed with almost all the power going into maintaining the
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cavity. Thus, Parsons identified and solved the problem of cavitation

on performance on high speed screws, and developed one of the first model

tunnels for investigating cavitation of marine propellers.

In addition to loss of performance, another phenomenon became

apparent as marine propulsion units became more powerful and operated at

higher speeds. With propellers, and also with other rotating hydraulic

machinery, the total vapor or cavity volume present for a noticeable loss

in performance may be significant. But even if the performance is not

noticeably affected, bubbles may form on the low pressure side of the

blade and collapse as they move into the higher pressure region on the

blade. The mechanical action of the bubbles collapsing on the blade sur-

face causes pitting of the surface when the blade is on the verge of

cavitation. In a paper presenting the results of a very extensive inves-

tigation into the possible causes of severe cases of propeller damage,

Sir charles Parsons and S. S. Cook (7) came to the firm conclusion that

the damage was mechanical in nature and was caused by collapsing cavi-

ties. A. T. Quelch in the discussion of this paper said the large pro-

pellers his company made for the ocean liners Lusitania and Mauretania

were quickly eroded two or three inches in depth° So rapid was the

destruction that the blades would have had to be replaced two or three

times a season. His conclusion on the damage was also that it was m_

chanical in nature and caused in part by streams of bubbles coming from

cavitation off forward brackets and impinging on the propellers.

From the time of these first investigations on marine cavita-

tion in the early twentieth century, innumerable situations have developed
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where cavitation either is an unwanted phenomenon contributing to damage

and loss of performance or is intentionally promoted and beneficial use

made of the phenomenon. Many reviews consider the varied aspects of

cavitation and erosion, vibration, noise etc. (8'9'I0'II'12)- Only those

aspects of cavitation comcerning the behavior of single bubbles will be

considered here. No attempt will be made to theoretically extrapolate

the results to liquid flows having so many bubbles that interaction be-

tween them may perturb the single bubble analysis. Also, large non-

spherical, oscillating, attached cavities will not be considered. These

restrictions will not greatly limit the value of the analysis as applied

to cavitation damage, because the current major hypotheses for the dam-

age involves the behavior of single bubbles.

C. Review of Theoretical Bubble Analyses

Besant (13) presented one of the earliest theoretical analyses

on the motion of the liquid during the collapse of an empty spherical

void or bubble. Rayleigh (14)'-gave a solution for this problem, which

gives the velocity and pressure of the liquid, assuming the liquid is

incc_ressible, inviscid, and has zero surface tension. The solution

predicts infinitely high velocities for the liquid at the bubble wall as

the radius of the bubble approaches zero. He also solved the problem

for a bubble containing gas which is isothermally compressed as the bub-

ble collapses and thus the gas arrests the bubble wall motion, and pre-

vents infinitely high velocities. Cook (7) also solved the problem of

spherical collapse, and assumed that the bubble wall struck a rigid con-

centric sphere aft_:r collapsing part way, thereby eliminating the
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difficulty of an infinite liquid velocity. At the instant of contact

he introduced liquid compressibility into the problem and calculated the

resulting pressure on the rigid sphere. Lamb (15) has also presented

Rayleigh's results, and has gone further to obtain the motion of an ex-

panding bubble where there is internal gas at a pressure greater than

the liquid pressure. In this expanding bubble, Lamb (16)-- used an adia-

batic gas expansion from an initially high pressure to represent a sub-

mari_ _ explosion.

Beeching (17) considered a Rayleigh type analysis and included

the effect of surface tension at the bubble wall as well as both adiaba-

tic and isothermal compression of gas within the bubble. His conclusion

on surface tension was that it was negligible unless the pressure differ-

ential between the liquid far from the bubble and the constant assumed

internal pressure were very small.

Noltingk and Neppiras (18) considered cavitation in an incom-

pressible liquid caused by ultrasonic vibration. In this case they gave

numerical solutions for the Rayleigh type equations with surface tension

for an alternating pressure in the liquid away from the bubble which

caused the bubble to oscillate when it contained a compressed gas° For

a given ultrasonic frequency, the initial radius of the bubble will de-

termine whether or not the bubble collapses completely during one cycle

of the imposed pressure field° Or, for a given initial bubble size, a

bubble resonant frequency can be calcu/ated. If the ultrasonic pressure

frequency is greater than the bubble resonant frequency the bubble will



-8-

oscillate irregularly during collapse and expansion, and if the ultra-

sonic frequency is less than the bubble resonant frequency, the bubble

will collapse completely during one cycle.

Poritsky (19) presented the first analysis of single bubble

collapse which considered liquid viscosity. As in the Rayleigh analysis

he assumed an incompressible liquid. In the Rayleigh solution, the ve-

locity at the bubble wall for a given value of the ratio of bubble radius

to initial radius can be obtained for any initial bubble size or liquid

pressure from a single solution to the suitably normalized differential

equation. However, the introduction of surface tension and/or viscosity

introduces a scaling effect into the equation through two normalized

parameters containing the surface tension and viscosity. Poritsky, and

also Shu (20) in a note to his paper, found that if the surface tension

is zero there is a limiting value of the viscosity parameter which if

exceeded will prevent the wall velocity from becoming infinite and in-

stead will cause the collapse to slow down; and will make the collapse

time infinite° When the effect of surface tension is included, all

bubbles collapse in a finite time.

All the work mentioned here so far has neglected the effects

of heat transfer from condensing vapor or heated, compressed gas inside

the bubble during collapse, and the effects of mass transfer by diffusion

of gas, between bubble and liquid. Such effects are of predominate im-

portance in situations of bubble growth or collapse involving heating of

liquids during boiling. They are of importance here also, even though

inertia of the liquid is usually considered the controlling factor_ in
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that they limit and determine the minimum bubble radius during collapse

and also the maximum liquid velocities and pressures. Siiver (21) pre-

sented one of the first analyses which considered the effect of the cc.n-

densation of the vapor inside a collapsing bubble. He assumed that the

rate of collapse was dependent only on the rate at which the vapor con-

densed on the bubble wall and the rate of removal of the latent heat

from the wall into the cooler liquid, thereby ignoring the liquid iner-

tia effects which governed collapse in the Rayleigh case. His analysis

eliminated the possiLility of infinite velocities and pressures, but

left some question as to the validity of the assumptions and of the re-

sults obtained therefrom. Eisenberg (8) states that Silver's results can

be taken as a lower limit on the collapse rate of a vapor filled cavity,

and have significance in that regard.

Plesset (22) has analysed the rate of evaporation or condensa-

tion into a typical bubble collapsing in water, and states that if the

velocity of the wall as it moves inward is appreciably less than the ve-

locity corresponding to the rate of condensation of vapor on the liquid

surface as determined from equilibrium conditions, then the pressure within

the bubble may be considered constant at the vapor pressure of the water.

In other words as the bubble wall moves inward all the vapor in the volume

displaced condenses on the bubble wall. For water at 72°F he estimates

that the maximum wall velocity for this condition to hold is _00 feet

per second, which is considerably below the maximum possible calculated

velocities, but within the range of velocities which can be observed

photographically before the bubble becomes too small to see. Plesset (23)

later considered the entire field of bubble dynamics including
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heat transfer effects, gas diffusion and bubble instability in a resume

report. Hepoints out that the probability that a vapor molecule which

strikes a liquid surface will stick to it is only 0.04 for water at O°C.

Using a modified approach to that above he obtains the "characteristic

velocity" for either evaporation or condensation at only about 26 feet

per secondusing the above probability of condensation of 0o04_ In any

event, it would appear that the finite condensation rate and therefore

the compression of the vapor can be significant in retarding the collapse

for rapidly collapsing vapor filled bubbles, especially in the later

stages of collapse.

Novotny(24)--verified that the damageto metal specimens, oscil-

lated by a magneto-striction device in various liquids, was strongly de-

pendent on vapor pressure. Assuming the validity of the usual hypothesis

that cavitation damageis caused by the stresses developed on the speci-

menduring bubble collapse, he indicates that the collapse is far less

violent for liquids near their boiling point or for liquids with high

vapor pressures° His conclusion on this point was that a higher vapor

pressure inside the bubbles prevented the bubble from collapsing so

rapidly, and therefore also prevented sufficiently high liquid pressures

from developing to cause damageto the adjacent solid specimens.

The effects of surface tension on liquid vapor pressure and

bubble surface temperature have not been extensively considered in rela-
(21)

tion to bubble collapse. Silver took account of the increase of

energy available from the decreasing bubble surface area and considered

this energy in the heat transfer from the vapor to the liquid° As the
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bubble collapses_ the energy availab!e_ which ls r_leased at. the surface_

is equivalent to the energy required to form a new iiqu_,d ,_urfa_% beyond

that energy necessary to overcomehydrostatic pressure, _ecker_ Roellig

and Wilson (25) also consider this surface c}ntribut!cn to _otal bubble

energy in a review of several authors' work on nucleation of bubbles°

They point out that most analyses ignor% in the energy balance describ-

ing bubble expansion from assumedmicro_bubb!es_ the energy necessary to

maintain the surface temperat_re constant during iso+.hermal expansions°

The curvature of the liquid surface forming the bubble wall. has also

been ignored in its affect on the equiiibr_um _apor pressure within the

bubble° Most analyses have assumedthat the equilibrium vapor pressure

within a small bubble was the sameas the va_or_p_s_u_o_.__ _, .__. over a large

plane surface_ which is the value reported in the saturation pressure_

temperature tables for liquids° Sir William Thomsont26) and also later

(27) '28)Keenan and Paul _ have shownthat the equilibri1_n vapor pressure

of a pure substance over a ,_u_ed liquid surface such a_ in a capillary

tube or a bubble is a function of the radius of c.u:_at_u_eof the liquid

surface. The vapor pressure inside a bubble of radius -- is given by

Paul (28) and by K_enan_ _J as

where p is the vapor pressure o_T_._the concave surface and Psat is

the saturation vapor pressure for a flat su__face at temperature To The

following table gives some values for the ratio Psat/:p in water at 68_o
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r

(inches) Psat

P

i0 -3 io000043

-4
io i.ooo43

lO -5 1.0043

i0 -6 io0427

i0-7 i°519

i0-8 65o 5

By comparison, the wavelength of light in the visible spectrum is from

Io58 x 10 -5 in. to 2°76 x 10 -5 in., and a spherical drop of liquid water

with radius 10 -6 in. contains 2°29 x 106 molecules. A reference bubble

used in the later numerical analysis has an initial radius of 50 mils or

5 x 10 -2 in. When the bubble has collapsed to one thousandth its initial

radius, or to 5 x 10 -5 ino, then P/Psat : io00084o Therefore, in the

range of the calculations, the effect is small, but may be appreciable

when considering nucleation phenomena from groups of liquid molecules.

The fact that liquids can support considerable tension, or

the equivalent that they can be superheated above the stable boiling

point without boiling, has received consideration in regard to the nu-

cleation of bubbles° Reynolds (29)" described experiments with a column

of mercury in 1877 in which he was able to support a 59 inch column with

atmospheric pressure. He then connected a vacuum pump to remove the
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formation of bubbles from preferred nucleation sites, both in cavitation

and in boiling heat transfer. The main object here in this regard will

be to use the information which is available on nucleation to predict

the possible gas and/or vapor content of the cavitation bubble and there-

by to more closely calculate the mechanismsinvolved in the collapse of

the bubble after it is already formed.

D° Statement of Bubble Dynamic Problem

1. General Theoretical Analysis

The theoretical analysis is concerned with the behavior of a

typical cavitation bubble in liquid. Assume that a perfectly spherical

void exists within a body of liquid, and that it is maintained by some

imaginary thin, hard shell, in a motionless state. At some instant (from

which time is measured from zero) the hard shell instantaneously disap-

pears, and the surrounding liquid, moving under the pressure differential

between the liquid and the void, flows inward to fill the void. At all

times the void or collapsing bubble is assumed to maintain its spherical

shape. In real situations, of course, the bubble would have grown from

a small nucleus to its maximum size as the result of lowering the liquid

pressure. Therefore, in comparing the theoretical presentation with the

experimental facts, it is assumed that there is no difference in the

manner of collapse of a bubble which has grown from a small nucleus and

a bubble which was artificially created for analytical convenience, pro-

vided only that the conditions which exist inside the real bubble and in

the surrounding liquid at time zero and during collapse are reproduced
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atmospheric pressure_ so that the column of mercury had.a tension at the

top of na_fly two atmospheres without breaking the column° Considerable

care was required in cleaning the glass tube to pei_mit this :-_ightension°

Reynolds noted that even though a liquid will support large tension_ it

is not necessary to provide large stresses to fracture it o In the same

manner a piece of cloth maybe easily torn from one edge and yet may
' 0

support tension° Fisher t3 ) has calculated the fracture strength of pure

liquids and found that the calculated values, are always greater by a very

large amount than the maximum experimental values° The premature fail,.re

is associated with J_purities in the iiquids_ where a solid material in

the liquid can act as a site for nucleation° Harvey _'_lj has also shown

that gas in crevices in solids acts as nucT.eation sites in liquids_ and

is the cause of fracture strengths lower _han th_oretically predicted°

Nucleation of bubbles also occurs from microbubb!es of gas which

may be driven under pressure into cracks in solids or into solution°

Zivi (32) has discussed the voids formed, in the water moderator_coolant

by nucleation of bubbles in the Spert Iil nuclear rea_tor transient tests

as reason for the reactivity decrease observed° The s_t_.s for nucleation

could have been either gas in the pores of the fu_.i,plates which did not

fill with water when the fuel was immersed it..th_ water_ or microbubbles

from radiolytic gas produced_ or gas disso]_re_d in the water_ which then

migrated to the fuel surface and adhered by surfac;e, tension° The increase

in fuel temperature caused these bubbles to ¢_-_;pandand displace moderator_

leading to a shutdown mechanism° Many other authors also consider the
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in the theoretical analysis° The desired information is the variation

of the bubble radius as a function of time and the velocity of the bub-

ble wall as the bubble collapses° Also desired is the velocity and

pressure distribution in the liquid adjacent to the bubble at any instant

of time during the collapse as a function of distance away from the bub-

ble wall and into the liquid° The manner in which these quantities

change as the physical parameters change will be investigated.

2o Liquid Conditions

_ssume an infinitely large body of static liquid with a small,

perfectly spherical void within it o The condition of infinite size is

required to eliminate the influence that solid or free surfaces can have

on the motion of the collapsing bubble, and is a common assumption in

many bubble collapse analyses,

Birkhoff and Zarantonello (33) considered an oscillating bubble

near a rigid surface and showed that the effect of the surface is to

cause the bubble to migrate towards the solid bo,Jndaryo Most of the mi-

gration takes place when the radius is small° Herri_ considered

the motion of 1[_derwater explosion b_Obles and also w_rified the influ-

ence of a nearly rigid surface.

In regard to cavitation damage, several authors consider the

collapse of bubbles which are attached to a solid surface and appear

oz(55)initially as hemispherical bubbles° L • considered the collapse of

a hemispherical bubble, where there is only radial velocity° He took

account of the viscosity of the liquid by assuming a parabolic velocity

distribution along a perpendicular to the surface, so that the circle
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of bubble contact on the solid was fixed at its original size. Therefore

the bubble collapsed with the top of the hemisphere approaching the sur-
(36,37)

face; and the bubble assuming a disc like shape. Naude and Ellis

showed photographs of bubbles collapsing on solid surfaces, and also

concluded that the collapse was not of a spherical hemisphere. They

found, as in Oza's analysis, that the hemisphere collapsed to a disc-like

shape and then the center of the bubble disc was penetrated by a liquid

jet which then struck the solid surface. A theoretical analysis for in-

compressible liquid, with no viscosity effect like Oza had used, indica-

ted that with irrotational flow, a perturbation of the surface could

cause the type of collapse which was photographed. The solid was a

photoelastic material, so the stress in the solid when the jet struck

the surface could be observed. They concluded that cavitation damage

was due to the action of this Jet of liquid° Kornf@Id and Su_arov (38)

had previously also come to a similar conclusionregarding cavitation

damage°

Recently_ Shutler and Mesler (39) performed experiments with

spark generated bubbles adjacent to solid surfaces and came to the op-

posite conclusion - namely, that it was not the liquid jet which caL_sed

the observed damage on their solid specimens. They observed small dents

from bubbles at their minimum volm_ _ and believed that the damage was

surely caused by a pressure pulse from a collapsing cavity at its minimum

volume. They further observed that a second solid boundary perpendicular

to the first caused the bubbles to collapse asymmetrically. Therefore,
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there is still somequestion as to whether cavitation damageis caused

by attached hemispherical cavities, or by more distant completely spher-

ical bubbles, or by both°

The magnitude of the effect of the adjacent boundary on the

bubble collapse is somewhatuncertain, and the proximity of the venturi

wall to the experimentally observed bubbles in the present investigation

may affect them. It will be assumedfor purposes of analysis that the

bubble considered is separated and independent from the venturi wall.

The theoretical analysis will be comparedwith experimental

photographic results of bubbles in a cavitating venturi, where the liquid

environment of the bubble is far from static. There is slip in the ven-

turi between the liquid and the bubble, with the bubble traveling at a

greater axial speed than the liquid in the constant cross section throat

of the venturi. In low velocity, gas-liquid tests, Smissaert (40) cor-

relates slip ratio, (ratio of gas velocity to liquid velocity) with

surface tension and dynamic viscosity of several different liquids as

well as velocity, temperature, and pressure° Vogrin(41) also observed

slip ratios on the order of lO or more in two-component flow in a con-

verging-divergi_ nozzle° Many other investigations also exist in the

literature regarding the effects of slip in various specialized cases

and these are merely cited as typical. Oneeffect of the slip on the

collapse of the bubble maybe through its effect on the circulation of

the bubble contents and the more rapid removal of heat from the liquid

in the vicinity of the bubble wall. Lamb(42) gives estimates of the

velocities of gas or vapor inside, and of the liquid outside, a constant
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diameter bubble in a known force field, such as a bubble rising in a

liquid in a gravity field. The effect of slip will not be explicitly

applied here to the theoretical analysis.

It will be assumedin the analysis, that there is no gravi-

tational or other body forces acting on the liquid in which the bubble

is collapsing. Especially in liquid metals, there may be electric and/

or magnetic field effects. Elliott (43)'" considers a magnetohydrodynamic

cycle for nuclear-electric power conversion in which electric force

fields are of importance. An interesting effect of the opposite type,

namely the influence of cavitation bubbles on a magnetic field, was

reported by Clark (44)-- In working with the undesired cavitation in

cryogenic liquid systems for rocket propulsion, it was found that when

cavitation occurred, a magnetic field is generated in the region. This

magnetic field is detected with appropriate sensing coils and used as

an indication of cavitation inception. The author also described ap-

paratus used for detecting a magnetic field which was generated where

helium gas bubbles in liquid oxygen or water collapse on a surface. He

indicated a possible mechanismwhereby the magnetic field generated by

collapsing bubbles and the subsequent eddy currents contributed to ca-

vitation damage. No attempt has been madehere to consider either the

effect of an external electro-magnetic field on cavitation bubbles or

to measurethe field generated by collapsing bubbles if indeed such a

field exists.

Gravitational effects may also be appropriately ignored in

the venturi where the cavitation bubbles are small and other pressure
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and velocity effects are predominate on the bubble behavior. However,

in applications such as boil ing heat transf_r_ the __.... ._ucyof the bub-

-.._'s on a hot surface may significantly affect th-_lr behavior°

in their investigation on the collapse of vapor-gas bubbles

in liquid near the boiling poinT., F!orscbletz and Chao(45) eliminated the

effect of gravity by letting their entire experimental apparatus fall

freely as a bubble was injected and collapsed in a tank of liquid. How-

ever, when the pressure rise in their _.xperlmental equipment was greater

than about __0 cmHg, they observed unstable - 71._o.....ap_e° In a typical man-

ner_ a jet of liquid appeared to pass do_uuthrough the bubb!e_ strike the

bottom surface and cause shattering. Underwater exp_osions(34_46) are

also strongly affected by bouyancybecause of the greate_ bubble size

and therefore greater pressure differential from top to bottom_ and be-

cause of the longer time of collapse and therefore greater time for

bouyancy effect to be felt. Gongwer(91) discusses high speed photographs

of a four foot diameter t_uderwat_rbubble formed by a_i ezplosive specially

selected to produce a minim_umof permanent gas upon detonation. Through-

out most of the _ _- .__o_±a_e of the bubble there appuar porcu_ine_!ike streaks

extending radially from the surface, attributed no debris on the surface°

The fact that these streaks are straight re.dial lines ±nd.icated a veri-

fication of the assumption of perfectly radial flow surrounding the

bubble Since the bubble _ _ in a relatively _ __- _:a_._owpool_ of water,

however_ the final collapse of the bubble showeda :_a_id upward motion

of the bubble center, in the extreme instance of large gas_filled bub-

bles in water, the initially spherical sh:_pedis::.oz%sin-to a torus-shaped
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void° Waiters and Davidson'47"(_describe experiments on gas bubbles

rising in static water where the bubble assumesa mushroomshape and

then breaks into a small spherical-cap bubble with a large toroid below_

Someconsideration of the probable conditions in the experi-

mental venturi used here indicated similar effects. A liquid particle

leaving the experimental venturi throat would suddenly start slowing

down in the diffuser if uniform single phase flow existed, and the ve-

locity dependedonly on flow area. The maximumdeceleration experienced

by a liquid particle under such ideal conditions would occur at the

throat exit. The liquid velocity V(Z) at a distance Z inches down-

stream of the throat exit for a 1/4" throat opening is given by

t

The liqnid acceleration is then

d 2 _d__d_Z_dv dZ __
d _:2 -- d fi d _:

2

2 3_.)VT (2 tc_

At a typical throat velocity, V T = 74.6 ft/sec,

the :hroat exit would be

_-2, 79 _ JO #_: _ -8_7. _s
8 t s - see 2

the acceleration at
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where the negative sign indicates the accele_ tion is directed upstream_

However, as indicated later, the velocity is probably not unifo_n across

the flow in the diffuser whencavitation is present, so the calculated

negative acceleration does not occur at the throat exit. A Jet of li-

quid leaves the throat and slows down abruptly at a location downstream

of the throat exit, so the deceleration is probably still very large.

Near the termination of the _avital [on and within a very short distance

the static liquid pressure (as shownlater) surrounding a bubble moving

with liqt id velocity rises sharply. The time rate of change of pressure

can be i0, 000 !bf/in2/sec. Thevery steep pressure gradient on even a

small bubble may cause asymmetric collapse, which _Tasobse_ed here as

a flattening of the bubble in the direction of flow_ Plesset (22) has

reported the spherical growth and collapse of bubbles from cavitation in

the varying pressure field over an og_ve in a water t_unel, based on

pictures by Knapp and Hollandero (57) A more complet_ descrip_ on of the

venturi bubbles obser_ed here will be given later, but the assumption

of spherical symmetry for single bubbles even in a large pressure grao

dient is assumedfor the present analysis to make th__mathematics at

all tractable°

3o Boundary Conditions in Liquid

The usual assumption, in bubble dynamics analyses, is that

the pressure very far from the bubble is specified and is spherically

symmetrical about the bubble° The narrow venturi throat which may be

only a few times as large as the bubble diameter, and th_ changing
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pressure gradients transverse to as well as along the direction of flow,

may cause asymetries in the liquid pressure around the bubble. During

the final portion of the bubble collapse, however, theory indicates that

collapse occurs so rapidly that pressure changes more than a few original

bubble diameters away will not affect the collapse. Therefore, local

pressure fluctuations near the bubble will be assumednegligible for the

present in the theoretical presentation.

Pressure variations in the axial direction as a bubble moves

through the venturi can be measured° Wall taps placed at various posi-

tions along the direction of flow are used to obtain the pressure vari-

ation around the bubble, and this variation will be assumedto change

symmetrically about the bubbl% as if the bubble were in a static liquid

where the liquid pressure had the sametime variation as would be felt

by a point which movesalong the venturi with the sameaxial velocity

as the bubble° Photographs of bubbles give the bubble axial position

and therefore venturi pressure, as a function of both time and bubble

radius° This pressure variation can then be used in calculations of

bubble behavior as the boundary condition for the pressure at infinity°

4o Boundary Conditions Inside the Bubble

It will be assumed that whatever the conditions of pressure,

temperature, or gas and vapor concentrations which exist inside the

bubble, they are uniform throughout the bubble with no radial varia-

tionso Trilling investigated the coll.apse and rebound of a gas

bubble, and concluded that the pressure variation at the bubble wall,
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whenthe shock waves in the gas as the bubble collapsed were included,

was virtually the sameas if the gas were compresseduniformly and

isentropically. Therefore, it will be assumedthat internal radial pres_

sure variations will not significantly affect the collapse behavior.

Hickling (49)"" considers the temperature rise of various gases

inside bubbles during a non-adiabatic collapse as a meansof explaining

the observed variations in intensity of the visible radiation from ul-

trasonically formed cavitation bubbles in liquid with several different

dissolved gases. This phenomenonof sonoluminescence has been observed

by manypersons and in manydifferent liquids o* Chambers(50) reported

varying intensities of luminescenae from 14 pure !_quids and from some

solutions for vibratory cavitation at 8900 cycles per second° He indi-

cated the light intensity was proportional to the product of viscosity

and dipole momentand inversely proportional to liquid temperature.

Jarman, (51) in a discussion of the manyand varied proposed mechanisms

for sonoh_ninescence, con_!uded, in a modification of his previously

reported resuits_ that, it might, possibly aris_ fr._n mioroshocks with_

._.- the collapsing _avitieso J_,rman_ud Tayior (5_) give one of the few

published reports of (very faint) sonolum_nes.:_encein a flowing system_

Hick!ing (49namely tap water in a cavitating ventuz_io ) concluded in

his analysis that the light was from gas within the b-._bblewhich became

incandescent when compressedvery rapidly, due in most cases, to the

*It was _oserved here using glycerin, m_xedwith a few drops of water,
oscillated by an ultrasonic horn at 20KCand about 2 mi! amplitude° A
faint bluish light was clearly visible to the naked eye in a darkened
room° However, no light could be seen in a dark room from tap water
cavitating in a venturi with throat velocities up to 200 ft/seco
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presence of various impurities. The variation in intensity with dis-

solved gas was caused by different thermal conductivities of the gases,

and therefore different smounts of heat transferred from the gas to the

bubble wall _d dissipated in the liquid, thereby varying the maximum

temperature of the gas near the bubble wall. Therefore, the radial var-

iation in temperature within a gas bubble can be significant, and as

Hickling shows, the smaller the initial bubble size the more pronounced

is the thermal conduction effect on radial temperature variations.

In the venturi used here, the gas within the bubble presumably

comesfrom the initial gas present in whatever nucleus initiated the

growth, and also perhaps to a slight extent from gas diffusion from the
(54)

liquid into the bubble during bubble growth° Treaste calculated

the length of time for bubble growth using several theoretical models in

an attempt to predict the time delay for the appearance of cavitation in

a water tunnel after the pressure is lowered to the point where it is

known that cavitation will eventually occur° He used two previously

published analyses° The first model assumed a large relative velocity

between bubble and liquid, thereby contributing to air diffusion and

subsequent bubble growth. The second assumed bubble growth by diffusion

from a static liquid, neglecting the velocity transport° The first pre-

dicted bubble growth times which were several orders of magnitude less

than his observed cavitation delay times, thereby indicating a possibly

significant effect on the growth or collapse of bubbles as a function

of the slip ratio between the bubble and liquid. The growth times



-25-

reported for the first. _ ialysis, including velocity transport_ however

were more nearly comparable to the growth times obse_ed here for single

bubbles growing in the venturio

The effects of gas diffusion before s.ndduring bubble collapse

will be considered in greater detail later_ when a specific procedure is

developed to be used in a n'americal analysis to represent the pressure

variation inside the bubble during collapse° Throughout this analysis,

as stated ab_e, the physical properties of the bubble contents will be

assamed__uiform at any instant of time, but mayvary with time° As the

bubble becomesvery small, the question of whether or not the continuum

approach is _alid becomesimportant, especially for the gas or vapor

Hick!ing (49inside the bubble° ) states that he considered that even

tho-aghthe me_ufree path of gas molecules maybe comparable to the bub-

ble dimension_ there are so manygas mole'__le collisions w]_.t,t the con-

tinuam approach is still valid, it is sufficient for the present, to

s+_atethat the initial conditions inside the b_Voblemay be estimated

from the vent_zoi conditions and the pressure -_ariation inside the bubble

can _e specified as a function of bubble radius_ _ud perhaps also bubble

wall _ye!ocityo The analysis will hence assumethat such a function is

_vailgoie, and can be varied to suit the conditions°



II. HYDRODYNAMIC EQUATIONS

A. Preliminary Introduction

The general equations of hydrodynamics have been discussed by

many authors, with application to the problem of a collapsing or expand-

ing spherical void in liquid.

The method of presentation, the assumptions made for the appro-

priate physical applicationj and the means of mathematical approximation

or solution, when possible, have varied considerably. It will be desir-

able here, to present some of the more conventional analyses in detail

in order to better interpret the numerical and experimental results which

follow.

While some of the detail might be thought to be more appropriate

in a purely mathematical summary as an appendix, its inclusion here per-

mits a convenient and hopefully beneficial means of bringing out important

differences among a few of the many other bubble dynamics analyses, and

of indicating any particular value of the present analysis by comparison.

The imcompressible liquid analysis will be presented first,

followed by the compressible analysis, and then both will be followed,

in Chapter III, by the numerical solutions obtained here.

B. E%uatlons of Flow and the Rayleigh Solution

The continuity equation for a compressible fluid can be written

-26-
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where_ p = fluid density, V = velocity vector, t = time and where_

is the total derivative_ (55) or the variation in density at a point mov-

ing with the fluid. For an incompressible fluid_ the density is con-

stant, so at any instant of time, Equation (i) gives

d' v V =0
(2)

Equation (2), when expressed in a spherical coordinate system (56) and

assuming spherically symmetric fiow_ is

-- - a_u (s)
\
_r B_

where u _ r_ial particle velocity

r = radius

Since Equation (3) is valid for any instant of time there is only one

independent variable r , and since the flow is spherically symmetric

there is only one dependent variable u so that (3) is an ordinary

differential equation which is simply solved by separation of variables.

Using the boundary conditions of velocity u = U and of radius r = R

at the bubble wall, the solution to Equation (3) is, as also given by

Rayleigh_

The general Navier-Stokes equation of motion for viscous, com-

pressible fluid flow in the absence of external body forces is
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where p = pressure

= shear viscosity

For an inviscid fluid_ the last term is zeroj and for spherically

symmetric inviscid flow Equation (5) becomes(56)

(6)

Equation (4) is substituted into Equation (6) to eliminate the partial

derivative in time_ giving an equation with r as the only independent

variable, After separation of variables the equation is integrated using

the boundary conditions that

-pc ) = -#
I" -..._O0 IdD

and u = 0 as r approaches infinity_ and using the fact that

U = dR/dt . The result is essentially a solution in Lagrangian coordinates_

where the motion of a particle of liquid is followed_ namely a particle

on the bubble wall. The bubble wall radius as a function of time is thus

t
(7)
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where P(t) = liquid pressure at bubble _all, or

P(t) = pressure _ithin bubble als% if surface tension and visco-

sity are zero

p=(t) = liquid pressure far from bubble

Therefore, the pressure at infinity_ p_(t) , and the pressure within

the bubble Po(t) (which is equal to the liquid pressure P(t) at the

wall, here) mayvary in time in Equation (7).

Rayleigh (14) presented a solution to this equation for a vari-

able internal gas pressure in the bubble, assuming Boyle's law held

during collapse. Lamb(16) considered an equivalent expression for an

expanding bubble, where he assumedan adiabatic gas expansion and found

an analytic solution for the particular case of T = 4/3 , where the

bubble pressure varied as (Ro/R)37 . Noltingk and Neppiras (18) consid-

ered the case of a gas filled bubble in an oscillating pressure field,

p_(t) , and used numerical methods to obtain a solution of Equation (7).

If then the pressure differential, (p_(t) - Po(t)) , is a knownfunc-

tion of time_ sometimesthe analytic solution is possible_ and if it is

constant_ the analytic solution is definitely possible.

Equation (7) may be written

(8)

Therefore_ the condition of incompressibility or constant density

expressed by Equation (4), which may be interpreted as a condition

imposing an instantaneous propagation of any pressure disturbance
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throughout the liquid_ has permitted the transformation of the partial

differential equation of motion, Equation (6), into an ordinary_ first

order differential equation_ Equation (8). It will be shown later that

the choice of similar assumptions regarding the propagation of pressure

or sound waves and also the propagation of other mathematical quantities

determines the degree of accuracy of analytic solutions which are fre-

quently used in handling the partial differential equation of motion.

It should be noted that the Equation (8) is a non-linear equation. Its

solution was obtained by Rayleigh without actually using the equation by

considering the physical problem and directly equating the available

energy of the pressure differential to the kinetic energy of motion.

Lamb, (16) in a formal, purely mathematical procedure, obtained the solu-

tion to this simple case for a constant pressure differential by using

an integrating factor as follows. Equation (8) is equivalent to

\

which, upon integrating between

U at R _ becomes

U = 0 at R = Ro and any velocity

(9)

\

e \e.' j
(IO)

and is identical to Rayleigh_s result for the bubble wall velocity as a

function of the bubble radius_ with a constant pressure differential,

(p (Ro) - po(Ro)).
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Using the following normalizationj where primed quantities

shall henceforth demote dimensionless quantities_

Equation (i0) becomes

,=2 I= _i
(ll)

Expressing R _ in terms of t _ _ using dR_/dt ' = U _ , Equation (Ii)

give s

!

= /4-_ i I_._..t_._;.___jR
_2 ...,,1k '-R _/

(12)

A solution to Equation (12) for complete collapse to R _ = 0 was

given by Rayleigh as the time for total collapse of a bubble in an

incompressible liquid_ collapsing under a constant pressure differ-

ential.

i :- 0.9/@@8 (13)

For intermediate values of R: 3 a numerical solution in tabular form

was presented by Knapp and Hollandero (57) It should be noted that the

particular form of Equations (ii) and (12) permits a single solution
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of the normalized equations to give all possible information. There are

no physical scaling factors involved. Equation (Ii) says that regardless

of the initial bubble sizes they will have the same real velocity when

they have collapsed to the same fraction of their original size_ provided

only that the ratio of pressure differential to liquid density is the

same. However_ the actual real time elapsed will be greater for larger

bubbles. Scaling factors will appear_ however_ when other physical

parameters such as surface tension and viscosity are considered.

C. Incompressible Liquid with Surface Tension and Viscosity

The inclusion of surface tension in the analysis changes

the liquid pressure at the bubble wall so that it is no longer equal

to the internal pressure. These pressures are related by

where = surface tension. Then Equation (8) for wall velocity becomes

After integrating in the same manner as before; the velocity is; for

constant (p=(Ro) - Po(Ro)),

(16)
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In normalized form Equation (16) becomes

]j,,2 2fl (17)

where

l

O- -- gF

Ro( (Ro)_
In comparing Equation (17) with Equation (Ii), it is seen that the

solution for velocity is now dependent upon a parameter _' _ in the

equation, so that for each value of the parameter there is a solution.

The effect of surface tension on velocity is_ as shown by Equation (17),

that for a given radius R' the velocity is larger_ and that the

influence of surface tension is stronger as the radius gets smaller.

A second physical parameter which has a scaling effect on

the motion of a collapsing bubble is the liquid viscosity° The in-

clusion of viscosity in the incompressible case has no effect on the

solution of the continuity Equation (4)° Further, as shown by

Poritsky, (19) the equation of motion, Equation (5), for an incompressi-

ble irrotational flow as in a spherical collapsej is the same whether

or not viscous effects are included. The effect of viscosity appears

only in the boundary conditions at the bubble wall. Its influence

causes the three principal stresses at any point in the liquid to be

different, and this difference is taken into account at the liquid

boundary. Instead of equating the pressures in the liquid and in the

gas at the bubble wall_ it is then necessary to equate only the
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principal radial stresses• However_ since the viscosity of the gas

and/or vapor within the bubble is small in comparison to the liquid

viscosity_ it is assumed that the radial stress in the gas is the

same as the gas pressure• Equation (14)_ when viscosity is included 3

is then

: _<o , (18)
R i D"

where _ = liquid shear viscosity•

The partial derivative is obtained from Equation (3)j at the bubble

wall_ and Equation (18) is then

R IR

Equation (19) is substituted into Equation (8); where pc(R) is re-

placed by P(R) _ and the result equivalent to Equation (15) which

contained only surface tension 3 is

(20)

From Equation (19) or (20), it is seen that the viscosity effect during

collapse when U is negative is such that the pressure at the bubble

wall is increased; reducing the pressure differential causing collapse

and therefore presumably reducing the wall velocity.

*If gas viscosity is also included; the last term becomes

4(_ii q + Pgas)U

• Hence if_ as is usual, Pliq >> Pgas ' it is per-oR

missible to neglect the effects of gas viscosity.
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For a variable pressure differential, p_(R) - Po(R) ,

Equation (20) is normalized by using the initial value of the pressure

differential_ p_(Ro) - po(RO) If the normalized viscosity para-

meter is defined as

Equation (20) becomes

(21)

tr

where all other appropriate terms are also normalized using the

initial pressure differential, If the internal and external pressures

were constant during collapse, the pressLLre term in Equation (21)

would be unity, and the remaining terms the same as shown° Equation

(20) differs from the previous Rayleigh Equation (8 _), or Equation (15)

in that it contains two additional parameters° When both the viscosity

and surface tension are included_ the additional term containing vis- "

cosity has the velocity in it in such a way as to prevent a simple

integration as performed on Equation (15)o An attempt to integrate

Equation (21) yields, for constant p_(R') - Po(R _) ,

(22)
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Poritsky (19) and Shu (20) show that there is a limiting value

of the normalized viscosity parameter which determines the bubble

behavior. They reduce Equation (21) by substituting a new independ-

ent variable 8 = R'/_' and_ assuming (p_ - po ) is constant_ obtain

d
(23)

When o' = 0 , Poritsky _19jf_shows a series of curves of U' vs

obtained numerically_ for several values of _= o While the viscosity

no longer appears in Equation (23) if the surface tension is neglected,

it still affects the solution because it determines the initial boun-

dary condition at U = 0 and R _ = i or 8 = i/_ _ . He concluded

that if _' > 0°46 the bubble will require an infinite time to com-

pletely collapse. Shu (20) arrmves at a similar result that the time

is infinite if _' > _ where _ < _6 , (_6 = 2.449) and finite

otherwise. If surface tension is included, both analyses show the

collapse time is finite.

The viscosity need not be large for the normalized viscosity

parameter to have its limiting value_ in view of the definition of

_' . A very small initial bubble radius and/or a small pressure differ-

ential have the same effect of increasing _7 .

For a variable pressure differential, p_(R) .- Po(R) E<iua-

tion (21) is valid, and is solved numerically here° This simple in-

clusion of a variable pressure either at infinity or within the bubble

is possible because the liquid is incompressible_ and any change in
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these pressures is felt immediately throughout the l_quido It is noted

that only the difference in pressure is important, so that a rise in

internal bubble pressure has exactly the same dyna_iic effect on the

collapse as a fall in the pressure at infinity. Of course in a real

liquid and pressure rise within the bubble ca.n be very much larger than

the environmental liquid static pressure so the comparable effect of such

a rise can be obtained only by lowering the pressu_-e at infinity well

below zero, thereby putting the liquid in tension. Real liquids are of

course limited in this respect.

The effect of viscosity is to change the available collapse

pressure differential by increasing the liquid pressure at the bubble

wall. The pressure distribution in the liquid away from the bubble, for

an incompressible liquid at any instant of time, is dependent only upon

the instantaneous value of the bubble wall velocity and acceleration,

and therefore only indirectly dependent upon the viscosity through the

viscosity affect on these two variables. Equation (4) is substituted into

Equation (6), the result is integrated between p(r) at r and p_ at r=_,

and using dU/dt = UdU/dR 3 Equation (20) is substituted for dU/dR, giving

This is identical to Rayleigh's result if the last two terms are

omitted and if his analytic solution for U is substituted° If the

variables are normalized using the _nitial pressure differential as

before, Equation (24) becomes

(2_.)
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I ": 12 ,2

\ P : 2r" 2, '

J ( ' ' '! T-';'(_')
r',R "; ÷ _': ! _/ _ .

L .; r
(25)

where

i

Cr')= r'- r-

Solutions for Equation (25) are given later for various pressure differ-

entials and parameter values after the velocity is determined numerically

from Equation (21).

Do Compressible. Viscous Liquid

The Navier-Stokes equation of motion, Equation (5), is used

for the compressible case, and the solution presented here for a col-

lapsing bubble follows that of Gilmore. (58,59) For spherically symmetric

flowj

i '
_u, ri V =:0

Using the vector identity (55)

_,2 = _,roZ(d,,., - c,_._i ,.,"_,._,",.

to eliminate the first term in the bracket in Equation (5),
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_le continuity Equation (i) is then substituted into this equation,

giving

I (26)

At this point, several assumptions have been made by Gilmore and by

others who have used the same procedure. First, the viscous effect is

assumed to be small, and second, the compressible effect is also assumed

small so that the product of the two in the last term in Equation (26)

can be neglected. Gilmore (_8) points out that the change in viscosity

with pressure in liquids is greater than the change in density with

pressure so the neglected term can be shown to be smaller than those

variable viscosity effects usually neglected in the Navier-Stokes

equation. However, the effect of compressibility is still partially

included through the continuity equation, and there is no mathematical

inconsistency in this procedure since the compressibility term would

have been dropped if the viscosity were simply assumed to be zero.

Therefore, in spherical coordinates, the compressible equation of motion,

Equation (26), becomes the same as Equation (6).

Another assumption is now made concerning the liquid_ namely

that it is barotropic, i.e., the density is a ftunction only cf pressure,

so that



Define a new quantity, which for nowmaybe thought of as s_mply a new

variable called enthalpy, and defined by

Then, from the preceding equation

rP

- r_ai dP .= _.mj h(P)

Equation (26), in spherical coordinates is then

_.Y_-
Dt _r"

Introduce now another new variable which is recognized as the sonic

velocity, e ,

From the definition of h ,

_ab....._L
dP

so that

(27)

(a8)

(29)

D_: _ c_ (3o)

and the continuity Equation (1) becomes

-± __=_/_,,
C _ Dt

(31)
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There are now two partial differential equations, (28) and (31), in

which there are three dependent variables, V , h , _ , and two inde-

pendent variables r and t . An appropriate equation of state for

the liquid, giving pressure as a function of the density_ is given later,

so essentially c and h can be reduced to one variable_ leaving two

equations, with two dependent and two independent variables, which must

be solved simultaneously.

There are various solutions to these equations in the litera-

ture and a discussion of someof the more important methods seemsin

crder here° Flynn (60) presented an approximate analytic solution wherein

he used a table of values of pressure and density instead of an explicit

equation of state for the liquid_ His solution was in terms of either

the exponential integral or the confluent hypergeometric function,

values of which he calculated and presented as curves° Mellen (61) com-

puted the bubble wall velocity using Gilmore's method, and used this to

get the pressure in the liquid at a fixed distance far from the point

of collapse° He computedthe propagation of the shock resulting from

complete collapse of the empty bubble to zero radius° A later work(62)

included the shock pressure as a function of distance, both with some

experimental verification from spark induced cavitation bubbles of about

one or two cm initial radius° Schneider(63) obtained a graphical solu-

tion to the compressible flow equations using the method of character-

istics in a hand calculation. The bubble collapsed onto an imaginary

rigid sphere_ and the compressibility effect caused the bubble to re-

bound away from the sphere after collapse° Brand(64'65) presented
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similar calculations to those of Schneider, but by finite difference

computation of the characteristics on a computer rather than graphi-

cally. He also found the shock wave resulting after collapse onto a

rigid sphere. Hickling and Plesset (66) present one of the most thor-

ough solutions to the compressible equations, for bubbles collapsing

and then rebounding from gas contained within, which was compressed

adiabatically. The machine solution was tal:en up to the point where a

shock wave formed on the rebound pressure wave° It is important to

note that all the above authors considered compressible effects_ but

none considered the possible viscous effects. The present solution

will include both.

The above Equations (28) and (31) must be solved simultane-

ously, or a method must be obtained to eliminate one of the independent

variables. There are various other acoustic and quasi-acoustic approz:-

imations to account for a finite instead of infinite velocity of pro-

pagation of waves. The Kirkwood-Bethe(67368) assumption is based on

experiments with underwater explosions, and is the one used here and by

Gilmore. It is assumedthat the quantity or characteristic r(h + u2/2)

is propagated outward in the liquid with characteristic velocity (c + u)

where c is the local sonic velocity. Therefore, the relation between

r and t can be expressed by

(52)

and one of these variables may be eliminated.
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Since the convective derivative in spherical coordinates is

.o_-D
Oi Dt Dr

(33)

Equation (32) becomes

which, when expanded, yields

(35)

Equation (35) is then merely the Kirkwood-Bethe assumption in appro-

priate form in spherical coordinates. The two partial differential Equa-

tions (28) and (31) are substituted into Equation (35) and the deriva-

tives with respect to r are eliminated° Since D/Dt is the deriva-

tive at a particular particle of liquid_ and since a point on the bubble

wall is such a particle, the resultJr_ equation will immediately describe

the motion of the particles on the bubble wallo Letting capital letters

represent the variables at the wallj and using the relation U = dR/dt ,

Equation (35) becomes

(36)

So far in Gilmore's method 3 an equation of state for the liquid

has been assumed but has not been explicitly stated. It will be assumed
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that viscous dissipation which occurs in the liquid at the bubble wall_

as was also the case for the incompressible analysis by Poritsky_ does

not affect the liquid properties such as temperature or density. Any

heat generated by viscous effects will be assumed to be lost from the

system_ so no heat conduction effects need be considered in the liquid.

The equation of state assumed for approximately isentropic compression

in many liquids is (58)

- .,_3 ¢371

where Pr and Pr are any reference pressure and density.

B _ 3000 atm._

7• are constants for water.

Jn = 7

Using (37), the sonic velocity is calculated from Equation (29)

c=d? _ B.) +17 f/_ __,_.-....J_

and the enthalpy h from Equation (27)

r .7i__ I
/ ?+_ _-__-
{ £+_;

Therefore, Equation (36) can be formally expressed in terms of the

dependent variable U , the independent variable R , and the boundary

condition for the pressure, P(R) , at the bubble wall.

The boundary condition for pressure far from the bubblej

p_ is assumed constant during collapse since the Kirkwood-Bethe

(38)

(39)
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assumption, Equation (32), provides for only outward moving character-

istics and a varying p_ would cause inward moving waves in the physical

situation. However, comparison of the compressible and incompressible

solutions shows little difference between the two during the early por-

tions of collapse which consumes most of the total collapse time. The

reason is that since c >> u throughout the liquid for this period, a

finite propagation velocity is still relatively so large that the liquid

behaves approximately as an incompressible liquid. Therefore, in spite

of the solution by means of the Kirkwood-Bethe assumption, a variable

pressure at infinity may be imposed for about the initial three-fourths

of the change in radius without any numerical i__cons_s-ce_cyo

The boundary condition at the bubble wall is introduced now

and this introduces the viscosity, surface tension, and the pressure

within the bubble° Equation (18) for the incompressible case, becomes

as follows for a compressible liquid:

= ,_ i g ,,,, ,oLu!./.- _._
" "--.... ' 7,-:, (40)/ g_ /_',,._ ,_.

According to Gilmore_ the last term is of T.he same order of significance

as the term for the product of the viscosity and compressibility which

was dropped from the Navier-Stokes equation and is therefore appropri-

ately neglected here° The result for the liquid pressure is substituted

into Equation (38) and (39) for C2 and H at the bubble wall, and

they in turn are substituted into Equation (36) for the bubble wall

velocity as a function of radius° These substitutions are made during

the numerical solution of Equation (36) on a computer and are not made

explicitly here. Appendix A gives the detailed procedure.
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The internal pressure Po(R) is as yet unspecified, and can

be assumed to be any function of R . The actual function may accomodate

an adiabatic compression of an initial quantity of gas in the bubble or

some combination of isothermal and adiabatic compression, or anything

which can be specified in terms of R . This function will be chosen

along with the pressure p_ to correspond approximately to the condi-

tions for a bubble in the experimental venturi.

The velocity and pressure distribution throughout the liquid

surrounding the collapsing bubble at any instant of time is found by

using the Kirkwood-Bethe hypothesis. By definition there is a quantity

z , where

z - Ch+d )

which is a constant along a path or "characteristic" traced by a point

moving with velocity (c + u) . In otherwords, along such a path in the

r - t plane the time rate of change of any variable is given by

+ +u) (42)

where the subscript c signifies the derivative along a characteristic.

The value of the quantity z(r,t) is known as a function of radius and

time for a particular particle of fluid, namely one on the bubble wall.

Therefore, start with the value of z(r,t) on the bubble wall at some

instant of time, and trace a path through the liquid such that Equation

(42) is satisfied, and such that z(r,t) remains constant. To do this,
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expand the momentum Equation (28) and the continuity Equation (31) and

add the two together 3 giving

r , "_,-]
_ #q + Co+u; "'_'_ -.,-2u"

@ ' ....... (43)
D i ....i7 i

Using Equation (42), Equation (43) becomes

t I ',
/ du t 2d.._

td÷_ +• r-'

I / ,.7',-.\
-- -- U..-_ ___.._._'-_!

c. Uf!
-,a

(44)

,m

@-

From Equation (41)

=--- - _ (4.5)
r 2

where z is a constant in the derivative in Equation (44), into which

h is substituted. The result is

/ <z;x,_ I z + ._ !._..... z...........'::_; _:_-'7.
(46)

The relation between radius and time along a characteristic path is

given by

(f_r \ ('C "
A@ S =- " *_J (47)

Therefore_ there are two simultaneous ordinary differential equations

with u and r as the dependent variables and t as the independent

variable_ and related to the bubble wall motion through the constant
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parameter z which, along with the initial conditions on u , t , and

r , is obtained from the instantaneous values at the bubble wall.

Once u _ and r are known for a given z , h is obtained

from Equation (45) and then pressure is obtained from Equation (39).

The result is

- $ (48)

o

The independent variable was chosen as t rather than r , as in the

bubble wall solution, because it facilitates the numerical procedure

for solution. If r were used, and if the bubble wall velocity were

greater than the local sonic velocity, then although the character-

istic would move away from the bubble wall at first it actually would

move inward, and then outward only when the local sonic velocity ex-

ceeded the particle velocity. In a numerical solution the increment

dr in radius would have to be changed from negative to positive, while

if time is used, the increment is of course always positive.

E. Surface Tension Effects in Bubble Collapse

It is assumed throughout this analysis that the surface tension

of the liquid in which the bubble is collapsing is constant during the

collapse. It is, however, well-known that surface tension is a function

of liquid temperature and also of liquid pressure. Furthermore, there

is evidence that it is a function of very small quantities of impurities
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present at the liquid interface. A discussion of some of the real pro-

perties involved is then in order here in order to appreciate the possi-

ble effects, but no attempt w_ll be ma_e to analytically introduce these

properties into the theoretical presentation of bubble behavior°

Burdon (69) has extensively disc assed the properties of liquid

interfaces and the surface energy° He considers the absorption of im-

purities at liquid surfaces and the requirements for equilibrium to

exist. The molecules in the layer at the surface of a pure liquid

possess energy by virtue of having been placed on the surface, where

there is an unequal attraction with surro1_udlng molecules because the

surface molecules do not have liquid attractive forces on one side.

When impurities are present_ they mdg_t be in toe form of a mono-

molecular layer of some fatty substance as on water of a variation in

the concentration of impurity molecules within the liquid and on the surface.

Fox and Herzfeld (70) have considered such an organic skin as

a reason for micro-bubble persistence in liquids. Toe effect of impuri-

ties either on the surface or in the liquid is almost always to lower

the surface tension of a pure liquido Burdon discusses the fact that

there is a time lag after formation of a new s_rface before the surface

tension reaches an equilibrium value° The reasons for _r_e time lag are

not clear, since the lag is of the order of l06 x the computed time for

diffusion to the surface. A surface, well-protected from contamination,

may continue to fall in surface tension for hours after the surface is

formed. The surface tension of mercury is especially variable when

minute quantities of impurities are present° Burdon indicates that
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probably Kemball_s(71) value for the surface tension of mercury in

vacuumof 485 dynes/cm at 20°C is the most nearly correct_ but values

are reported of from 430 to 515 dyues/cm with experimental accuracy of

1/4 of i percent. On exposu_e to air 3 the decrease varies from 40 to

50 dynes/cm/minute to a decrease as little as 5 dynes/cm/24 hours.

Thereforej we can conclude that the speed of formation of the bubble

in the venturi, and the constituents of the original microbubble could

have some influence on the effective value of the surface tension at

the bubble interface.

Probably the most important consideration with regard to sur-

face tension and bubble collapse is that at the critical pressure and

temperature of a pure liquid the surface tension is zero. As shown later

the pressures within a bubble can easily reach the critical pressure, and

the temperature is also predicted to rise.

Nowak, (72) in developing an equation of state for water near

the critical point discusses the laws which must be satisfied at the

critical point. One of these is that the latent heat of vaporization

will become zero. In discussing the stability of bubbles during col-

lapse, Plesset (23) mentions this disappearance of the difference between

liquid and vapor phase when the vapor in a bubble is rapidly compressed.

He uses this argument together with his derived instability for collaps-

ing bubbles to explain why a bubble may not reopen, but instead will

fragment. This is reasonable if one considers a local region of very

high-pressure compressed liquid_ and the fact that since the latent heat

and surface tension are zero_ no additional energy is required to form
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theoretical analysis it is assumedthat the surface tension effect in-

creases the pressure of the bubble contents as the radius becomesvery

small, while in real situations where the pressure approaches the criti-

cal point the opposite may occur. The effect becomesless at high

pressure and the lack of an interface promotes greater instabilities

and deviation from spherical collapse. It is shown, however, that for

rapidly collapsing bubbles the relative effect of a constant value of

surface tension is small in the theoretical analysis, so the neglect of

its variation with pressure will not of itself cause the analysis to

deviate greatly from the physical situation.

F. Viscosity Effects in Bubble Collapse

Some of the possible effects of viscosity on the motion of the

bubble wall during collapse will be discussed here, and as in the case of

surface tension, the results will not be explicitly used in the theoreti-

cal analysis, but rather will merely help to understand and interpret

the probable degree of validity and application of that analysis° Con-

sidered here are the effects of viscosity, other t_an as considered in

the numerical analysis, on the assumed spherically symmetric flow of

liquid near a collapsing bubble. There are also other macroscopic

effects which involve the effective viscosity of a mixture of

water and bubbles as occurs in a cavitating venturi. The hydrodynamic

behavior of such a mixture of bubbles in water will differ from that of

pure water because of both the increased compressibility of such a mixture
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and the change in the effective dilational viscosity and in the effec-

tive shear viscosity of the mixture. Equations for calculating the

effective viscosity of dispersions of solid particles and of liquid

particles dispersed and maintained by surface tension have been dis-

cussed by Oldroyd(73) for very low shear rates. _Noanalysis of the over-

all cavitating venturi flow properties will be attempted here since single

bubbles are the main concern, and the analysis would not obviously con-

tribute to this.

The first consideration is that of the effect of pressure on

the usual shear viscosity of a liquid. Pressures in the liquid near a

collapsing bubble are high, and therefore if pressure affects shear vis-

cosity causing it to vary from the assumedconstant value, then the effect

will be apparent whenthe bubble is small and the velocity high. It is

the bubble behavior in this region of collapse which is most important

to the study of the damagecausedby cavitation bubbles and on possible

correlations of damageand fluid properties, so such consideration of

viscosity is appropriate. Bridgman(74) has investigated the shear viscosity

of manypure liquids at pressures up to 10,650 atm for low shear rates.

For water, relative to the value for water at 0°9678 arm and O°C, the

viscosity at i 0.9678 atm and 30°C and 75°C is respectively 0.488 and

0.222. At 5800 atm, the viscosity at O°j 30_, 75°C is 1.347, 0.786,

and 0,367. At 10,650 atm and 30°C, the relative viscosity is 1.126_

Water has a peculiar behavior in that for temperatures below 30°C, the

viscosity decreases with increasing pressure for pressures up to about

lO00 atm, and then increases. For higher temperatures it increases with
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increasing pressure for all pressures above one atmosphere. Therefore,

the shear viscosity in the vicinity of a cavitation bubble in water at

30°C can increase by the ratio 1.126/0.488 = 2°3 and possibly even more°

Since the viscosity appeared analytically to have a retarding effect on

the bubble collapse (although later numerical results qualify this state-

ment), the assumption of a constant viscosity with respect to pressure is

probably a conservative one when seeking to show that collapsing bubbles

can cause damage to mljacent solids° However_ when considering the

possible temperature rise in and near a bubble_ the variation of viscosity

with temperature may counteract the change with pressure° The viscosity

of water decreases by about a factor of two for a temperature rise from

30°C to 75°C over the entire pressure range considered by Bridgman. In

conclusion then 3 a detailed consideration of the _rariation in shear vis-

cosity would be difficult to apply to the calculations of bubble wall

velocity and is no_ warr_uted here_ since the variation with pressure

and temperature tend to cancel each other for collapsing cavitation

bubbles°

The variation in viscosity of the water in the venturi with

dissolved air was considered since the expermmental system is operated

with tap water which initially is essentially saturated with air° Deaera-

tion equipment on the system can reduce the air content to about 30 per-

cent of the saturation value. Suciu, Zoss and Sibbitt (75) investigated

the solubility of nitrogen in ]_ater for temperatures to 700°F and partial

gas pressures to 5000 psiao A shallow minimum in the curve of solubility

vs temperature was found for all partial gas pressures_ at just below
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200°F; then the solubility increased without limit as the critical tem-

perature of water was approached. At a constant temperature of IO0°F

the solubility increased from about 0.i cc uitrogen per gram of water

(STP) when the partial gas pressure was I00 psia, to about 30.0 cc

gas/gm water at 000 psia (STP). In other words if the water in the

venturi is saturated with air at about atmospheric pressure and if the

air solubility behaves like the nitrogen solubility_ then the water in

the high pressure region surrounding a collapsing bubble is highly under

saturated in the local high pressure region. It then remains to pre-

sent information on the viscosity of air-saturated water at high pres-

s1_re_. Unfortunately no such data were found at high pressurej but

there are data reported for atmospheric pressure.

Caw and Wylie (76) reported the viscosity of air-saturated

water relative to thai of air-free water. They found that the effect

of air on the kinematic viscosity of water at one atmosphere pressure

does not exceed 13 parts in i05_ and further 3 that the effect of the

pressure of one atmosphere of air over the water did not change the

viscosity by more than a few parts in 105 . The results apply for tem-

peratures of 20 ° to 30°C. No mention has been made of the possible

diffusion of gas in the vicinity of the bubble_ due to gas concentra-

tion gradients or to pressure gradients_ because the very short times

involved during the collapse tend to negate such contributions. There-

fore_ even though the effect of dissolved gas on the dynamics of the

collapsing bubble system is uncertain_ it probably is less important

than some of the other assumptions which are made, and will_ therefore_

be neglected here.
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The viscosity term appearing in the usual Navier-Stokes equa-

tion of motion has certain inherent limitations in its applicability to

real hydrodynamic situations° In the deri_ration of the viscous equation

of motion according to Lamb_ (77) a mean pressure p is defined as the

arithmetic mean of three mutually perpendicular instantaneous stresses

acting on a fluid element_ but this definition has certain implications

as will be shown. The pressures in the three principal directions are

related to the fluid element deformation according to Stokes by a gen-

eral linear relationship, which for the X direction in rectangular

coordinates is, as expressed by Tisza (78)

= - 2_ _'_ -,_ _J,_ (_9)

where V is the vector velocity and u its x component_ and similar

expressions apply for the Y and Z directions. _ne two quantities

and W: are here simply assumed constants of proportionality between

stress and d (ormation_ and Ps is the hydrostatic pressure° For a static

fluid then_ the three component press_-es are all equal to each other

and to the usual hydrostatic pressure. If_ for a fluid in motion, the

mean pressure p is used in describing the fluid behavior_ then Equa-

tion (49) gives

,_ = i = j = ,. - .u _-_' _,d,'_,,V

If k is defined by

(50)

(51)
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and the continuity equation is used, Equation (50) becomes

dt

Therefore, if the fluid behavior is given by Equation (49) and if also

the mean pressure is defined as in Equation (50) then the pressure is

dependent upon the time rate of change of density as shown in Equation

(52). Stokes, in a quotation given by Tisza, (78) indicated that the

quantity k should be zero if in a uniform dilation the pressure is

to depend only on the instantaneous value of density and temperature.

It is a usual assumption of hydrodynamics and the Navier-Stokes equa-

tion of motion to make k = 0 Stokes justified this by saying that

in most fluid-flow problems the density is nearly constant or at least

is changing slowly with time. If this assumption is not madej then the

Navier-Stokes equation becomes the following, as given by Liebermann, (79)-

in the absence of body forcesj

(53)

the constant k is the usual shear viscosity, and k' is called the

dilational or compression viscosity. For an ideal monatomic gas it

can be shown (86) that k is exactly zero, so that k' = -2/3 k •

The justification for k = 0 given by Stokes does not apply

in many situations where either the pressure change is sufficient to

significantly change the fluid density, as in the following numerical

results for cavitation bubbles_ or the pressure changes very rapidly
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with time as in the ultrasonic studies of energy absorption in liquids

or in any case involving shock waves in fluids. Karin and Eosenhead (80)

in a review of the quantity _' or k , which is frequently called the

second coefficient of viscosity, discuss the importance of including _'

in determining energy absorption of waves in fluids. They point out that

in all experiments to measure absorption in gases or liquids since the

first in 1898, the experimental values of absorbed energy were larger

than the values calculated, with the exceptions of mercury and liquid

argon, on the basis of Stokes coefficient

2

where Co is the sonic velocity and _ is defined by

-z_ X

(55)

and Jx is the intensity of a plane sovand wave after traveling a

distance X o Equation (54) shows that if the density is relatively

high, as it is for liquids as compared to gases, then the absorption

will be significantly measurable only at very high frequencies° At

high frequencies however, or high rate of change of density, the second

viscosity coefficient becomes important, and therefore Equation (54)

does not hold. Liebermann (79) gives as an approximation for the ab-

sorption coefficient

%0

(56)
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Using a method proposed by Eckart, _81jf_Liebermann measured the ratio of

the two viscosities, _'/_ 3 for twelve liquids, mostly at a frequency

of five megacycles. The ratio was positive for all liquids, instead of

-2/3 as it would be from Equation (51) if k were set equal to zero.

He concluded that it was definitely necessary to include the dilational

viscosity, and that when it was included_ Stokes absorption theory

agreed well with the experimental results.

For at least one liquid the ratio of viscosities was a func-

tion of frequency, with the ratio apparently increasing with decreasing

frequency. Liebermann explained this by including a relaxation effect

in the dilational viscosity. The relaxation time for shear viscosity

is usually assumed to be the mean free travel time of the molecules, or

on the order of 10 -12 secondj and is thus not significant at megacycle

frequencies. When appropriate correction was made for the dilational

relaxation, the results gave a dilational relaxation time about 2 x 10 -7

second for the liquid ethyl formate. Karin and Rosenhead (80) discuss

some of the proposed molecular mechanisms for dilational relaxation,

and give values of m _ for water at 17 megacycles of 0.052 poise at

4°C and 0.026 poise at 20°C. Libermann gave the value of _/_ for

water at five megacycles as 2.4_ independent of temperature from 4°C

to 25°C. Litovitz (82) further discussed the theory involved in the

molecular structure of compressed liquids, and has separated the con-

tribution to compressibility into the relaxation effect due to struc-

tural relaxation and the effect due to so called solid-like compression

of the liquid lattice. He quotes a ratio for the relaxational
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compressibility to the total adiabatic compressibility of water as 0.61.

Lttovitz also mentions that liquids exhibit shear rigidity when sheared

at high rates, with a shear relaxation time comparable to the structural

relaxation time.

The question now occurs as to what significance these effects

may have with respect to cavitation bubbles. So little comprehensive

data is available that at most it can only be estimated whether or not

such effects are important, without attempting for the present to quan-

tify them. As a typical example_ consider the result for a cavitation

bubble collapsing from an initial radius of 50 mils in compressible

water at a static pressure of one atmosphere_ and containing gas which

is compressed adiabatically from an initial pressure of io0 x 10 -3

atmosphere with 7 = 1.3o As will be shown later_ _he maximum wall

velocity is slightly less than the sonic velocity in water at one

atmosphere° Taking the ratio of wall velocity to instantaneous bubble

radius to obtain an approprTate frequency_ the frequency is about

7 x 107 sec -I The pressure in the liquid at the bubble wall is

1o26 x 104 atmospheres giving a liquid density io27 times larger than

at one atmosphere and the total time elapsed is Ioi x i0 -4 seconds.

Therefore, the combination of a large change in density in a very

short elapsed time suggests that the dilational viscosity effects may

be of importance in collapsing cavitation bubbles. As the bubble wall

accelerates inward the appropriate frequency becomes very large, and

it is conceivable that dilational and shear relaxational effects might

also become important in some liquids. The possible magnitude of the



-60-

compressibility term omitted from the Navier-Stokes equation in the

numerical solution will be considered later. If the second viscosity

effect were included there also_ then the magnitude of the last term

would be from 3.4 times as large for water to several hundred times as

large for carbon disulphide when the time rate of compression is high. (79)

In view of the magnitude of these relaxational effects and

the definite possibility that such effects can occur in cavitation

bubbles_ somequestions arise concerning the liquid behavior° For ex-

ample when a liquid undergoes an extremely high shear o_ compression

rate as in the vicinity of a small radius bubble during collapse_ and

the liquid exhibits relaxation_ by what mechanismdoes the liquid

relaxation occur? The molecules of liquid could undergo rotation 3 or

transfer from one so called lattice site to another with an accompany-

ing release of energy. It is conceivable that this energy is emitted as

discrete quanta with wavelengths in the visible light spectrum, and that

this be a mechanismfor sonoluminescence. It is interesting to note

that the secondviscosity effect for carbon disulphide is very large 3

and also the sonoluminesence from carbon disulphide in water is large

when comparedto water alone. However, other liquids having high

second viscosity ratios do not have extremely high sonoluminescent

intensity. A detailed survey of the molecular behavior of liquids and

liquid mixtures, including the frequency dependenceof the relaxation

effects is of course not warranted herej but its desirability is

certainly suggested by the above analysis.

J

i



III. RESULTS OF NUMERICAL ANALYSIS

A. Behavior of Characteristic Curves

The variables at the bubble wall are evaluated independently

of the liquid behavior awsy from the bubble wall. This method is pos-

sible because of the Kirkwood-Bethe assumption on propagation of the

characteristic constant quantity r(h + 2/2) at known velocity (c + u).

If this condition were not analytically imposed on the equations for

motion of the bubble wall, then the motion of the entire liquid field

and the wall would have to be considered at the same time in the numer-

ical analysis. As it is, the values at selected increments of bubble

radius are computed first and used as initial conditions to start each

characteristic curve. Once the initial values of radius, velocity, and

pressure are known, the characteristic path is determined completely

independently of all other liquid or bubble behavior. The relation of

one characteristic curve to all the others is made through the variables

time and location along a characteristic path. Consider the plane of

liquid radius vs time. The bubble wall is represented by a single curve

in this plane, and for radii less than the bubble radius at a given in-

stant of time, there are no characteristic curves defined -- the curve

for the bubble wall is the boundary of the region in the entire r - t

plane in which the characteristic curves exist. Each point in the re-

gion has a value of the quantity r(h + u2/2) , and only one value can

exist at any liquid particle position r at a given time t. The path

of those points for which this quantity is a constant is the character-

istic path, and all such paths originate on the bubble wall.

-61-
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In Figure i the bubble wall (for parameters of a reference

bubble used throughout this chapter) is represented by the curve

through the circled points, which merely indicate the origins of each

of the characteristic paths which extend into the liquid° It is impor-

tant to note that as the bubble becomessmaller, the change in time both

between the points of origin of the paths and along the path becomes

very small° It is essential that the paths be properly located in time

so that there is no incorrect situation caused by numerical inaccuracy

where two characteristic curves cross° This situation would represent

the fact that two different values of r(h + u2/2) exist at the same

liquid particle at the sameinstant of time and is of course physically

impossible° Considerable care is required to retain sufficient numer-

ical accuracy in the normalized time to prevent such incorrect overlap°

The numerical procedures involved in this are discussed further in

Appendix IIIo However, since each path can be followed out as far as

desired without reference to what happens at the bubble wall after it

leaves, it is conceivable that a path originating at a later time over-

takes a preceding path° Such a possibility has been indicated by

Fitzpatrick and Strasberg (84)--who indicate that this situation repre-

sents the formation of a shock in the liquid, which forms after the

bubble wall has been stopped either by the common,but artificial,

assumption of a small concentric rigid sphere or by assuming a sudden

pressure rise in the gas contained within the bubble° No overlap of

characteristics was observed for the range of parameters chosen here

during the collapse of the bubble° The propagation of a pressure pulse
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or shock outward into the liquid subsequent to the arrest of the bubble

wall motion is considered later.

Figures l, 2, 3, 4, are plots of the -_haracteristic paths for

succusively smaller bubble radii. Each succeeding figure has been plot-

ted on an expanded time abscissa but all with the same time normalization

and referred to the same zero point at the start of bubble collapse.

Figure 2 is expanded by a factor of 250 over Figure l, 3 by a factor 20

over Figure 2, and 4 by a factor 50 over 3, so that if Figure 1 were

plotted on the same scale as Figure 4, it would have an abscissa 250,000

times longer. Such a portrayal demonstrates the inherent difficulties

in the calculations, especially when interpolation between the curves

is necessary to obtain the _ariables for a given fixed value of time.

The slope of those curves which are marked with circles is

the bubble wall velocity dl_'/dT' = U' . The slope of the characteristic

paths is (dr'/dt')c = (u' + c' ), the velocity of propagation of the

characteristic. Since the liquid particle velocity, u , is always nega-

tive for collapse, the quantity (u + c) becomes zero when the Mach num-

ber lul/c , becomes equal to 1.O. This occurs in Figure 1 for a radius

of 0.02, but the horizontal slope is not visible on the scale of the

figure. For smaller bubble radii when lul/c > i , the slope

of the characteristic at the bubble goes negative as seen in Figures 2

through 4. A negative slope represents a negative propagation velocity

as viewed from a fixed frame of reference so that even though the

characteristic moves away from the bubble wall, it actually moves inward

toward r = O. This continues until the pressure along the characteristic
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rises enough so that the sonic velocity becomes large, and therefore the

Mach number decreases even if there were no decrease in velocity° Also_

the pressure rise, and therefore also the rise in h , near the bubble

wall is very rapid so that for the quantity r(h + u2/2) to remain con-

stant when h is increasin@ the velocity u must decrease rapidly.

The result is that the characteristic moves inward for a distance of

only about two tenths of the bubble radius, then reverses and moves

outward. This rapid reverse in direction was one of the most difficult

properties of the solution to evaluate numerically with the excellent

accuracy desired as shown by the curves°

Figure 5 shows the liquid particle velocity and Mach number

along several of the characteristic paths shown in Figures i through 4.

The solid lines are normalized velocity and the dotted lines are Mach

number at the same radial position° It is seen that for normalized

bubble radii less than about 10 -3, and for the conditions and parameters

listed which were taken as a reference set, the absolute value of the

liquid velocity along a characteristic path increases as the _-adial

position decreases_ then the absolute velocity decreases with the char-

acteristic still moving inward and finally the characteristic moves

outward and the absolute velocity very rapidly approaches zero° The

Mach number at the bubble wall is considerably less than the normalized

velocity for small bubble radii because the pressure and therefore sonic

velocity rise rapidly as the bubble collapses° A sharp pressure peak

occurs along the characteristic path near the bubble so that even though

the absolute normalized velocity increases, the Mach number starts
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radii less than I x 10-3 increases whenthe viscosity is increased.

This samebehavior is observed for viscosities from 2 to at least 500

times the viscosity of water, other parameters remaining the same. A

more extensive discussion of the effect of variation of parameters on

only the bubble wall variables will follow. It is noted that while the

actual wall velocity increases with increased viscosity, the wall Mach

number decreases because the liquid pressure at the wall is increased,

for a given bubble radius• whenthe viscosity is increased, thereby

increasing the sonic velocity.

For values of bubble radius less than lO-5 Figure 6 shows

considerable variation in the velocity curve° This is attributed to

the interpolation method for finding values of the velocity at constant

times by selecting points from manychs__acteristic curves° For such

very small bubble radii• the time increments are too small to retain

sufficient numerical accuracy. However• the method of computation is

such that the characteristics leaving the wall at earlier times are

still well defined, and are not affected by later leaving characteris-

tics• so the solutions are valid for all greater bubble radii° The fact

that the curves at constant times are smooth for all larger bubble radii

indicates a valid method of interpolation. The curves for the behavior

only at the bubble wall are not in any way affected by the behavior of

the numerical solution on the characteristics because the two are

analytically distinct.

In considering the curves for velocity for _ = 1 • it is

seen that the slope du/dr at the bubble wall appears to decrease with
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decreasing from the bubble wall and continues to drop sharply along

the path. At the point where the characteristic curve for Mach number

reaches a minimum radius, the quantity (u + c) is zero and the Mach

number should be exactly equal to one since the outward propagation

with velocity c is countered exactly by the inward propagation of

velocity (-u) at this time. All the characteristics are consistent in

this respect as evidenced by the fact that the minimum radius on all

the Mach number curves occurs at Mach number = i.O in Figure 5.

The physical meaning of the characteristic curves is sometimes

difficult to appreciate. It is more desirable to have the equivalent

of an instantaneous picture showing the variables as a function of liquid

radius. The method of interpolation along each characteristic to find

the variables at a fixed time is given in Appendi x III and the results

are discussed in the following.

B. Pressure and Velocity Fields in the Liquid During Bubble Collapse

The curves in Figures i through 5 are replotted in Figure 6

in terms of Mach number and normalized velocity vs normalized liquid

radius at several selected fixed instants of time. The identified points

represent values at the bubble wall and the curves then represent the

velocity of the liquid when the bubble has collapsed to that radius.

Again, the solid lines are normalized particle velocity and the dotted

lines are Mach number. In addition to the previous reference values of

the parameters, curves are shown for an increase in the liquid viscosity

to i00 times that of water. The most important observation from these

curves is that the bubble wall normalized velocity for normalized bubble
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decreasing bubble radius, but this appearance is because of the log

coordinates° The numerical value of du/dr actually increases dras-

tically as radius decreases, thereby increasing the viscous pressure

term at the bubble wallo It is seen however, that for the same value

of bubble radius when the bubble radius is less than about 1 x l0 -3,

the slope du/dr is less in the liquid at the wall when the viscosity

is larger. From Equation (18), the contribution to the pressure in the

liquid at the wall due to viscous stresses is given by 2_u/_r , which

for the incompressible liquid at the bubble wall is simply _rwU/R o

When the incompressible solution is used, an increase in viscosity causes

a decrease in bubble wall velocity as expected. However, in the com-

pressible case, the contribution to the pressure at the wall from viscous

effects is given by Equation (40) as -4_U/R = (4_U/3C2)(dH/dR) _ but

the last term here has been neglected in the numerical solution° It

will be shown in the present calculations that the wall pressure (and

therefore also the enthalpy, H) increases more rapidly with decreasing

bubble radius when the viscosity is increased° Therefore, the term

containing dH/dR increases and the net effect of the entire term

above, which was neglected, would be to tend to counteract the effect

of the viscous term which was included° Unfortunately, no analytical

presentation has been obtained which could definitely show that an

increase in viscosity would or would not have the effect observed on

an analytic model which included both terms, even though a possible

reason has been given above, so that the validity of the numerical results

of a viscosity increase in describing the behavior in a real physical

situation remains in doubt°
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Consider now the variation in velocity at a fixed point in

the liquid starting from the instant when the bubble wall passes that

-2
point° For example, when the bubble wall passes r' = i x i0 , the

normalized liquid ve!o_ity is 1o95o By the time the bubble wall has

reached i x 10-3 , the velocity at r _ = i x 10 -2 has dropped to 1o02

and remains at essentially that value as the bubble continues to col_

lapse° Similar behavior occurs at other points in the liquid, but the

ultimate constant velocity at each point is different° For values of

normalized radius greater than about i x i0 -2. , there is little differ-

ence in this ultimate velocity for an increase in viscosity as shown°

The variation of Mach number near the bubble wall is differ-

ent from that of velocity° At any instant of time after the normalized

bubble radius is less than about 0°5 there is a large pressure peak near

the bubble wallo Therefore, the sonic velocity within the pressure peak

is very large and the Mach number accordingly small° The plot of Mach

number vs liquid radius then shows an extremely rapid drop near the

bubble wall as seen in Figure6. The Mach number then remains essentially

constant throughout the liquid out to a normalized radius of about

1 x lO -2 , where it then drops in about the same. manner as the liquid

velocity, with increasing radius° At a fixed point in the liquid, the

Mach number drops rapidly from the value at the bubble wall after the

wall passes and then remains constant as the bubble continues to col-

lapse, in a manner similar to the velocity° However, the Mach number

is different from velocity in that for all points in the liquid at radii

less than about 1 x lO -2 the Mach number drops to about the same value
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after the bubble wall passes, n_mely 0°35° In interpreting such behavior

in the liquid it should be recalled that the plot of Figure 6 is on log

coordinates so that the distance being considered is less than lO -2 of

-4
the original bubble radius or a distance less than 5 x l0 inches for

the reference bubble under consideration, where the Mach number remains

constant.

The velocity in the liquid at a fixed time varies, as indica-

ted in Figure 6 to approximately 1/(r' )1.4o The bubble wall velocity

in an incompressible liquid varies as 1/(R' )1.5 (Figure ll) and the ve-

locity in the liquid at a fixed time varies according to Equation 4 as

1/(r' )2. The bubble wall velocity for the reference parameters in com-

pressible liquid, for bubble radii less than about lO -3 varies as 1/(R' ).55°

An approximate, inviscid, analytic result of Gilmore (58) for compressible

liquid gave 1/(R' )°5° Hickling and Plesset (66) reported the wall velo-

city to vary as 1/(R' )°785 for the empty bubble in inviscid liquid.

Therefore, the effect of viscosity in water for an incompressible analysis

does not significantly change the bubble wall velocity as a function of

bubble radius. For the compressible case, the bubble wall is definitely

slowed down by the effects of compressibility°

Figure 7 is a plot of liquid pressure vs radius for several

bubble radii, and for several liquid viscosities° When the viscosity

is one _imes that of water, it is seen that the pressure at the bubble

wall is relatively low, but rises extremely rapidly by almost three de-

cades at a distance into the liquid of somewhat less than twice the bubble
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radius. The pressure in the liquid at a fixed point rises as the bubble

wall passes, then remains at a constant high value as the collapse pro.

ceeds. The pressure varies with r' , as indicated on Figure 7, as

1/(r' )1.8 When the liquid viscosity is increased to lO0 times that of

water, the pressure at the wall increases faster with respect to bubble

radius. The peak pressure near the wall, however, is about the same as

that for the smaller viscosity, and the constant pressure at a fixed

radius in the liquid after the wall has passed is also the same. There-

fore, when considered with the results for velocity and Mach number, an

increase in viscosity has little effect on the liquid behavior other

than at or very near the bubble wallo

Poritsky (19) defined a viscosity parameter in his analysis for

incompressible liquids according to

and indicated that when _' > 0.46 , the bubble would not collapse with

infinite velocity, but would slow down and take infinite time to collapse.

He further stated that if surface tension were also included the bubble

would always collapse in a finite time. Using the parameters of Figure

7, the limiting viscosity would be 1468 times as large as that for water.

The pressure, only at the bubble wall, for this case is also plotted in

Figure 7, where surface tension is included. It is seen that the wall

pressure is above that for both other curves down to a normalized bubble
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radius of about 4 x 10 ®3 , at which point the wall pressure drops sharply

to exactly 1.O0 and remains there as the bubble continues collapsing°

The normalized wall velocity at this point is about _5 x lO -5 , which is

equivalent to three inches per second_ or the wall has essentially stop-

pedo The normalized viscosity parameter can be increased by decreasing

the initial bubble radius, the liquid density, or the pressure differ-

ential causing collapse as well as by increasing viscosity° It is of

interest to note that the bubble wall slows down and nearly stops even

though surface tension is included (Poritsky's resulus for an incom=

pressible liquid showed a continued collapse in this case)° Also_ the

numerical solution for an incompressible liquid including surface ten_

sion indicates a sudden slowing down of the bubble wall when _ = 0°46°

As a check on the numerical accuracy of the incompressible

solution, which is the same method as that used for the compressible

case, results were obtained for a Rayleigh bubble in inviscid water

without surface tension, and compared with the exact analytical result

for complete collapse of an empty bubble° The computed collapse time

was less than the analytic time by only 0o082 percent when the bubble

radius was taken down to the point when the computed time for that pro-

gram no longer changed within the numerical significance used° This

result is considered indicative of the appropriateness of the Runge_

Kutta type numerical solution for this type of prohle% where many

increments are made in the independent variable, 10eo, bubble radius°

_6
At a normalized bubble radius of 1 x lO , the computed normalized
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velocity is -8.16 x l0 ll which is only 0.033 percent lower than the

exact analytic result given by Equation (ll), and this after a thousand

or more computed steps in the bubble radius° A detailed numerical analy_

sis of the non-linear incompressible or compressible equations as pro-

grammed on the computer to enable one to say with certainty whether it

is the numerical procedure which caused a difference with other published

analyses is extremely difficult° Hence the other alternative of compar-

ison with an exact solution was used° This comparison indicated no

evidence of a numerical inconsistency in the results, and yet as will

be explained later the results appear to differ slightly with other

analyses. No explanation is available at this time.

C. Bubble Collapse with Adiabatic Internal Gas Compression

Figures 8 through l0 show the collapse behavior of a bubble

with the same set of parameters as before with the exception that the

internal gas pressure is not zero, but varies from an initial value of

1 x l0 -3 atmospheres in proportion to (1/R'3)l°3o In Figure 8, the

dashed line represents the bubble wall velocity and the solid lines the

velocity of the liquid away from the bubble wall at various times° It

is seen that the wall motion is abruptly stopped when there is internal

gas in the bubble° The wall velocity decreases much more rapidly at

first than the nearby liquid velocity. This behavior is attributed to

the compressibility of the liquid and the finite velocity of propagation

of a disturbance, in this case the pressure rise at the bubble wall. As

a result, the velocity gradient in the liquid at the bubble wall changes
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sign. The numbered circles on the bubble wall curve represent selected

values of time so that the velocity curves can be compared with the Mach

number and pressure curves at the same instant.

Figure 9 is a plot of the Mach number vs liquid radius. The

maximum value of Mach number occurs at a normalized bubble radius of

2.3 x lO -2 , whereas the maximum wall velocity did not occur until the

bubble wall radius was 1o6 x lO -2 . The Mach number on the curve num-

bered five has a minimum near the wall, and a maximum farther away from

the wall. These results compare with those of Hickling and Plesset (66)""

who used a different numerical method from the Kirkwood-Bethe assump-

tion of propagation used here, and who neglected both surface tension

and viscosity effects. Actually, surface tension and viscosity for the

particular values of parameters used here do not affect the general

bubble behavior significantly, but as shown before, at least viscosity

can have a significant effect within a realistic range of parameters°

The Mach number and the velocity at a radius equal to the initial bubble

radius rise as the bubble starts to collapse, and then fall to constant

values as the collapse proceeds° The approximately constant values at

r/R = 1.0 after the bubble radius is less than Ool is less than about
o

lO ft/sec.

The corresponding numbered curves of liquid pressure vs

radius are shown in Figure 10, along with some additional curves at

other times. The pressure gradient at the bubble wall becomes zero at

the same time that the bubble wall reaches its maximum velocity. This

is of course entirely consistent with the equation of motion, Equation (28)_
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which was used in the analysis° The behavior of the liquid after the

velocity goes to zero at the wall and then becomes positive is that of

the familiar bubble rebound, and will be considered in more detail later°

During the collapse, the pressure in the liquid at a fixed radius rises

rapidly as the bubble wall passes, and then remains relatively constant,

or at least rises less in proportion to the bubble wall motion° Recall

however, that time is not proportional to bubble radius. At a bubble

radius of 1 x lO -2 the normalized time is 1_4o00119, and at the final

minimum radius of 9°8 x lO _3 time is only 134o29303o The maximum

liquid pressure at a radius equal to the initial bubble radius is 12

_ttmospheres, and at a radius l0 times the initial radius the maximum

liquid pressure during collapse is only lol atmospheres, or lO percent

above the initial liquid pressure°

D° Bubble Wall Velocity with Various Parameters

The velocity and Mach number at the bubble wall for various

liquid parameters are plotted in Figure llo Consider first the three

curves for values of viscosity equal to zero, one, and one hundred times

that of water° All other psrameters have the reference values indicated

unless otherwise specified on the separate curves° For normalized

radii less than l0 "3 , the velocity is increased with viscosity, as

noted previously in discussing the velocity in the liquid away from the

bubble wallo For larger radii, the opposite behavior exists° This

tends to confirm the previously stated reason for th_ anomoly, namely

that it is caused by the neglect of the term proportional to the rate of
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Figure ll. Bubble Wall Velocity and Mach Number vs Normalized Bubble

Radius for Reference Bubble Parameters Except Where Noted

Otherwise on Individual Curves.
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change of enthalpy, H , at the bubble wall. The rate of change of

H would be large only when both the velocity is large and the radius

is small enough to cause the wall pressure to be large. The Mach

number is seen to behave exactly opposite from the velocity - decreasing

at a given bubble radius with an increase in liquid viscosity.

When the viscosity is increased to the limiting value stated

by Poritsky (19), the wall velocity decreases in a manner very similar

to the sudden decrease caused by the presence of gas within the bubble.

It is apparent that there is a cut-off point in viscosity somewhere

between _ = i00 and _ = 1468 times that of water. The limiting number

1468 would change of course if Ro, D, or (p_ - po ) were to change.

The &ncompressible solution gives a velocity at the bubble

wall which is 17 times larger than the compressible solution at

R' - i x 10-3. Similarly, when a gas is included, the incompressible

liquid collapses to a radius which is 0.18 of the minimum radius for

the compressible liquid, when the internal gas pressure varies in the

same manner with bubble radius. If the initial internal gas pressure

is decreased, the bubble collapses farther and attains a greater wall

velocity. A decrease from i x 10-3 atm to i x 10 -4 atm causes the

maximum wall velocity to increase by a factor of 2.6.

A decrease in the _nitial bubble radius, R o , has a similar

scale effect as an increase in both the viscosity and surface tension.

Figure ii includes the wall velocity for R = 0.i0 mils. The curve

indicates slightly higher velocities for normalized radii to i x 10 -2

where it meets the standard curve for R o = 50 mils, then the velocity
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for R o = 0.10 mils increases more rapidly than the standard curve

as the radius continues to decrease. An increase only in the surface

tension, up to six times that of water, causes a very slight increase

in wall velocity which cannot be distinguished when plotted on Figure llo

An increase in the liquid pressure causing bubble collapse,

from 1 to lO atmospheres, causes aproportionately greater velocity in-

crease at the start of bubble collapse than after the bubble is very

small. At R' = 0.6 it increases the wall velocity by a factor of 3.2,

and at R' = i x 10 -5 the wall velocity increases by a factor 1o48.

E. Pressure Pulse from Rebounding Bubble

It has been shown by Hickling and Plesset (66) that the peak

pressure from a gas bubble rebounding in a compressible liquid is at-

tenuated in proportion to 1/r . Two cases from the present numerical

analysis are included here for gas pressure within the bubble for both

compressible and incompressible liquids, and are summarized in the

following table.

BUBBLE COLLAPSE WITH INTERNAL GAS

R o = 50 x l0 -3 in, _, _ for water; p_ = 1 atm Pi(R') = Po(R'3)-l.3

Compressible

Po = i x i0-3 atm

Pmax = 6.77 x lO4 atm

R' =min 9.82 x l0 -3

Incompressible

Po = i x 10 -3 atm

Pmax = 5.51 x lO 7 atm

Rmi n = 1.76 x lO -3

Po = i x 10 -4 atm

Pmax = 5.82 x 105 atm

R'mi n = 3.13 x 10 -3

Po = i x 10 -4 atm

Pmax = 1.170 x I0 II atm

R' = 1 369 x lO -4
min
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The peak pressure on the rebounding pulse from the indicated radii is

shown in Figure 12 for the two compressible cases. The incompressible

results have been omitted as they are so much different and are not

rea/_ly applicable. The initial bubble radius is significant in two

respects. First, the magnitude of R o has a scaling effect on the

results, through the viscosity and surface tension parameters, which

can be important especially for small bubbles° Second, the pressures

have previously been plotted vs normalized radius, but the actual dis-

tance a pressure peak will travel will be greater if the initial bubble

radius is larger. This is of particular importance in estimating the

pressure applied to adjacent solid surfaces in regard to cavitation

damage. However, because of the scaling effects, each initial size

bubble requires a separate computer solution, unless an appropriate

scaling law can be established.

A comparison was made between the total energy available and

the energy used to compress the gas within the bubble according to the

known pressure variation° The available energy is given by

where R' = /R ° minmin Rmin and R is the minimum radius when the gas
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has stopped the bubble, obtained from the computer solution.

used to compress the gas is

' _.9 I ,,o.9 ]

-/
_ I0._

The energy

The difference in the two energy quantities is the viscous dissipation

in the incompressible case. In the compressible case the difference

represents the viscous dissipation plus the kinetic and pressure energy

in the liquid. As shown in Figure 8, the bubble wall velocity becomes

zero before the liquid velocities farther from the bubble so that there

is still kinetic energy.

For the bubble in the table, when Po = 1 x l0 -& , the total

available energy is 6._1 x lO -4 ft - lbf for essentially all the mini-

mum radii shown since the energy is proportional to the difference of

the cubes of the maximum and minimum radii. The energy to compress the

gas in the incompressible liquid, when Po = 1 x lO -4 atm, is

6.40 x l0 -4 ft - lbf, indicating that 1.69 percent of the initial energy

is lost to viscous effects at the bubble wall. In the compressible

liquid the available energy is the same when Po = 1 x lO -4 arm, but

the energy to compress the gas is only 0.383 x l0 -4 ft - lbf since the

minimum radius is 22 times larger. Therefore, at the minimum radius,

94 percent of the bubble collapse energy exists as liquid potential and

kinetic energy, or has been degraded through viscous effects. When the

initial gas pressure is increased to lO -3 arm, the lost portion in the
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y

incompressible liquid remains the same at 169 percent. The portion

in the compressible liquid is reduced to 79 percent.

The viscous dissipation per unit time in the incompressible

liquid is given by (19)

r,z

Note that this is given as energy dissipated per unit time at a given

bubble radius and wall velocity. The total energy dissipated during

the collapse can only be obtained by numerical integration because the

velocity, U , is not known as a function of radius, R o However, we

can obtain the instantaneous dissipation rate at the maximum wall velo-

city. For example, when Po = 1 x l0 -4 , and R' = 1.83 x lO -4 ,

Maximum Viscous Energy

Dissipation Rate for Bubble

in Incompressible Liquid.

= 2.19 x lO 4 ft-lbf/sec

= 39°8 Horsepower

= 29.7 Kilowatts

It must be remembered that such rates apply only for time durations of

fractions of micro-seconds. The instantaneous dissipation rate is not

available for the compressible liquid, since it would require a numer-

ical integration of liquid velocity throughout the liquid.

In conclusion then, the magnitude of the maximum pressure in

the bubble when it contains gas cannot be simply obtained by an energy
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balance since the compressibility effects in the liquid and the initial

gas pressure strongly affect relative distribution of the available

energy in the bubble gas and in the liquid. If the proportion of avail-

able energy which went into compressing the gas were approximately a

constant as was the case for the incompressible solution over the range

taken, then for a given initial gas pressure within the bubble the

maximuminternal pressure and minimumbubble radius could be easily calcu-

lated. Assuming a 1/r peak pressure attenuation, the pressures at

various distances from various size bubbles could be determined°

No mention has yet been madehere of the detailed shape of

the shock front which forms in the liquid° Benjamin(85) states that a

shock will form whenthe peak pressure is above about 2000 atmo Hick-

ling and Plesset (66) set a lower limit of about 1000 arm for the wave

to steepen into a shock° To calculate the shape of the sho_k front

requires a detailed analysis which includes energy dissipation in the

liquid° Such a procedure is beyond the immediate scope of this work°

However, since the time rate of loading by the shock on a solid boundary

can be significant in determining the material behavior, such a detailed

analysis might seemappropriate° For the present, it can be said that

the magnitude of the pressures near a rebounding bubble is sufficient

to cause material damage(Figure 12), but that the pressures during

collapse, assuming that the bubble collapse center is stationary, appar-

ently are not° Of course, potential flow analyses (33) show that a col-

lapsing bubble will actually migrate toward an adjacent solid, so that
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during the collapse, surfaces could be closer to the collapse center

than the initial bubble radius and hence damaging pressures could im-

pinge on such surfaces. A useful extension of the present work would

be an examination of the possibility of a sufficiently rapid center

motion to occur.

dA



IV. EXPERIMENTAL EQUIPMENT AND RESULTS

A. Water Damage Facility

The investigations of cavitation in the Nuclear Engineering

Department of the University of Michigan have been described by Hsmmitt. (83)

One of the facilities for investigating the damage mechanisms of cavi-

tating water flow in a venturi was also used for this work. A centrifu-

gal pump with a variable speed drive provides water flow to a high pressure

tank. There are four outlets from this tank to four experimental loops,

so that from one to four loops may be operated at once° The loops return

to a low pressure tsnk, and then to the pump inlet, thereby completing

the flow path° A surge tank is connected to the low pressure tank, and

the gas pressure over the water in the surge tank determines the loop

reference pressure° A schematic of the loop is shown in Figure 13 with

the cylindrical damage test venturis in place. For the observations of

bubbles reported herein, three of the loops were blanked-off at the high

and low pressure tanks, and the fourth loop assembled with a two-dimen-

sional plexiglas venturio

There are three possible flow variables for a constant condi-

tion of incipient (first visible) cavitation in the venturio The flow_

rate is determined by pump speed, since there are no valves in the main

loop flow, and monitored by an orifice and differential manometer in the

return leg of the loopo Once the flow-rate is set, the pressure on the

surge tank is set for the desired extent of cavitation in the venturi,

which was always the minimum condition necessary for good photographs°

-92-
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The second variable is air content of the water. Deaeration is accom-

plished by spraying a bypass flow from the main loop into a tank held

under vacuum. The third variable is temperature. For a given flow-rate,

the minimum temperature is determined by the flow of tap water in the

cooling coils within the low Pressure tank° The maximum attainable tem-

perature is determined by the pump-work input and therefore by pump speed,

assuming minimum cooling of the lOOpo

B° Two-Dimensional Plexiglas Venturi

The design of the experimental venturi was dictated by several

requirements° First, it was necessary to provide a cavitating flow in a

known pressure environment° Second, it was necessary to have a trans-

parent venturi in order to photograph the flowo The cross-sectional flow

area of the venturi is rectangular at every axial position, with the long

edge of the rectangle constant at three inches° The nozzle tapers at a

six degree included angle to a constant area throat about three inches

long, and is followed by the diffuser portion having the same taper as

the nozzle. The venturi flow area is then symmetrical about the throat,

except that the diffuser portion is longer° Adjustments are provided so

that the throat opening can be varied from 1/8" x 3" to 7/8" x 3"° After

initial runs and photography, pressure taps were put into one of the two

tapered plexiglas pieces as shown in Figure 14o

The assembly and appearance of the venturi are shown in Figures

15 to 19. Figure 16 shows the two tapered sections and one of the flat

plexiglas plates removed to show the flow area° The four plexigias pieces

are pinned together and inserted into the cast aluminum end pieces° A

I

I
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Figure 14. One of t h e  Two Tapered Plexiglas  Sections of the  Venturi 
After  Pressure Taps had been Installed i n  it. 
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Figure 16. Assembly of Venturi Showing End Pieces. 

Figure 1-7. Assembl27 of Venturi Showing Axial Bars 
P a r t i a l l y  Inserted and Snowing Spacer 
Discs for Both Ends. 
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Figure 18. Venturi  Assembled Showing Bars and 
Clamps on Plexiglas  Faces. 

Figure 19. Assembled Venturi  i n  Loop. 

. 
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smooth entrance to the rectangular venturi from the round four inch pipe

of the loop is provided by a cast aluminum piece, and the variation in

throat size is accomodatedby a series of aluminumdiscs with tapered

rectangular openings as shownin Figure 16. Onedisc is removed, and

another placed at the other end of the plexiglas to maintain constant

overall length, for each 1/8 inch increase in throat size. The large

aluminum end pieces are held axially by eight round threaded bars shown

partially inserted in Figure 17o Two square steel bars run axially on

each of the four sides of the plexiglas and are held by a series of clamps

as shownin Figure 18. The entire assembly is connected into the loop

with standard pipe couplings as shownin Figure 19o The entire water

facility with three damagetest venturis in place and connected, and

with the two-dimensional venturi in place but not connected is shownin

Figure 20.

C. High Speed Photography and Pressure Profiles

High speed motion pictures were taken of the cavitating flow

in the venturi to observe the growth and collapse of individual cavita-

tion bubbles° A Fastax camera was used at about 7700 frames per second.

The camera was synchronized with a high-speed short-duration strobe-light

which provided exposure times of about one microsecond per frame. The

venturi was arranged so that the constant three inch dimension was verti-

ca& as shown schematically in Figure 21. Light was from behind and passed

through a diffuser. At the time of some of the high speed photographs,

there were no pressure taps in the venturi°
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Figure 20. Water Cavitation F a c i l i t y  with Three Damage Venturis 
and the  Two Dimensional Venturi. 



-i03-

Plexiglas Venturi ---7
#_Aocation of Arrow on

Vent_i Throat

8" J

50 m lens Plus
" "" | / I 1/2 extensionj

at f2./ /" /-1/_" Vent=t _hroat (,low /
/ / into paper)

! _ Light Diffuser

_ l-l/4" Dia. Cylindrical Polished Reflector

q Arrangement for High Speed Photography

Arrow Scratched

on Venturi Throat

_ Throat Exit

O. 61"

_1_A

L 1.32" _1 1543-I

Field of View with Above Arrangement

Figure 21. Schematic Arrangement of Venturi, Camera, and Strobe Light,

and Field of View Photographed.
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An arrow was scratched very lightly on the inner front surface

of the venturi throat to use as a scale dimension in the analysis of the

photographs. The point of the arrow is at the throat exist and it points

in the direction of flow as shown in Figure 21. The actual field of view

for that film which was examined in greatest detail was 0.61 inches high

by 1.32 inches long, making the film image about one third true size.

Pressure taps were placed at twelve locations on one of the

tapered plexiglas pieces of the venturi as shown in Figure 22. Pressure

profiles were taken at twelve flow conditions. Simultaneously with the

pressure profiles, still pictures were taken of the flow. A 4" x 5"

press camera with the bellows fully extended was used_ giving about a

one to one image on high speed Polaroid sheet film. The light source,

from above the venturi, was a single flash from a small commercial strobe

light with a duration of three microseconds. The slow decay in the in-

tensity of the light output from this strobe is evident in the streaks

of light from the bubble highlights trailing downstream as the bubble

moves.

In all the photography and pressure profiles it was difficult

to obtain a perfectly steady cavitation field. The intermittant appear-

ance and disappearance of the cavitation was caused in part by surges

in the pump speed resulting from difficulties with the variable speed

drive, and in part by the phenomenon itself. The still photographs re-

present the appearance at only one instant of time as an appropriate

average. A much more steady cavitation field occurs with extensive cavi-

tation, but it is then impossible to photograph individual bubbles col-

lapsing.



-105-

TAP -'_

I

2

3

4

5

6

7

8

9

I0

II

12

2-D Venturi Pressure Taps

I 3 5 7 9 II
----0 -----0- -------4)_ 0----- --0------<)

.am

0 0 C _--O
2 4 6 8 I0

I THROAT EXIT

FROM THROAT EXIT (in.)

1.050

0.654

0.275

O. 035

O. 568

0.942

I. 321

I. 689

2.062

2.439

2.814

5.060

ARROW SIZE

12
@

DIST.

4-

1544

--- O.205"-_

Figure 22. Locations of Pressure Taps in Venturi.
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High speed photographs were taken at two throat openings, 1/8

inch and 1/4 inch, at the minimum velocity for which cavitation occurred.*

Two sequences of frames with the 1/8 inch throat are shown in Figures 23

and 24. It is seen that the circular images are definitely not spherical

since the diameter of the circle is greater than the dimension of the

throat opening. The comet-like tail on the circular voids is typical of

the appearance of spherical bubbles when they touch the venturi wall.

The peculiar wave-like appearance of the steady void in Figure 23 is of

interest but is unexplained° The sequence in Figure 24 shows individual

bubbles distorting and combining with the stationary mass of void, but

the individual bubbles appear to remain distinct as separate cells in

the mass. This particular combination of transverse bubble velocity and

bubble growth rate evidenced in this film is such that the bubbles grow

too large to remain spherical with the 1/8 inch throat° At a higher

throat velocity the bubbles would have less time to grow in the low pres-

sure throat region° Photographs of about 200 ft/sec showed much too

extensive a cavitation field to observe individual bubbles° Attempts

to lessen the cavitation by either increasing the loop pressure or by

decreasing the flow rate resulted in a complete dissappearance of cavi-

tation, i.e., a fine enough adjustment of the operating point did not

prove possible°

*The pipe-gasketing system used is not suitable for vacuum operation,

so that minimum cavitating velocity is fixed by the requirement of

maintaining positive gage pressures throughout the loopo



l -  

-107- 

t 
1 

H 

Figure 23. High Speed Photographs, 1/8 inch Venturi Throat, Velocity 
75.4 f t / s ec ,  Air Content 1.6b voi. $, 177 Microseconds per 
Frame, Scale Length 0.25 in .  (Reel A)  
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Figure 23. (Continued) 
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,Figure 24. High Sped Photographs, 1/8 inch Venturi Throat, Velocity 
75.4 ft /sec,  A i r  Content 1.64 vol .  $, 137 Microseconds per 
Frame, Scale Length 0.25 in. (Reel A) 
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Figure 24. ( Continued) 
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Figure 24. (Continued) 
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Figure 24. (Continued) 
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Figure 24. (Continued) 
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Figure 24. (Continued) 
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The venturi throat opening was then increased from i/8 inch to

1/4 inch and high speed photographs were taken at a velocity of 74.6 ft/seco

The results are shown in three sequences in Figures 25 to 27. There are

many perfectly spherical and separate bubbles visible_* all of _hich flat-

ten in the direction of flow as they collapse. The non-symmetric collapse

is caused by the sudden pressure rise in the venturi diffuser° Collapsing

bubbles in Figure 27 appear to have a shape similar to that of bubbles

rising in a gravitational field, the sudden deceleration being equivalent

to a field acting in the downstream direction causing bubbles to tend to

move upstream° Figure 25 shows an apparent rebounding bubble° Figure

26 shows the typical behavior of two bubbles, one of which is close be-

hind the other. In all such cases observed they join together before

collapsing. Bubbles which are close together in the direction transverse

to the flow always move parallel to each other, and collapse separately

and never appear to influence each other_ n _nna ..... _ _ ....

symmetric collapse is shown in Figure 27° The spherical bubble flattens

on the downstream side, and the flat side then appears to move into the

bubble creating a torus shaped void° These pictures are believed unique

in showing the collapsing behavior of cavitation bubbles in a high pres-

sure gradient° A total of _97 bubble images were analyzed from this

film. All the bubbles on the film which were perfectly spherical, did

not strike the wall, and were greater than about 15 mils diameter maximum

size were included°

* It is obvious from these observations that the bubble size spectrum

does not scale directly with throat opening, if the throat length is

maintained constant° No information is available in this regard if

throat length is scaled with opening°
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Figure 25. High Speed Photographs, 1/4 inch Venturi m o a t ,  Velocity 
74.6 f t / sec ,  A i r  Content 2.35 vol.  &, 157 Microseconds Per 
Frame, Scale Length 0.25 in .  (Reel D> 
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Figure 25. (Continued) 
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Figure 26. High Speed Photographs, 1/4 inch Venturi  Throat, Veloci ty  
74.6 f t / s ec ,  A i r  Content 2.35 V o l .  $, 150 ~ C r o s e c o n d s  Per 
Frame, Scale Length 0.25 in .  (Reel D) 
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Figure 26. (Continued) 
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Figure 27. High Speed Photographs, 1/4 inch Venturi m o a t ,  Velocity 
74.6 f t / s ec ,  A i r  Content 2.35 v01. %, 132 Microseconds Per 
Frame, Scale Length 0.25 i n ,  (Reel D) 
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Figure 27. (Continued) 
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Figure 27. (Continued) 
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Figure  27. (Continued) 
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Figure 27. (Continued) 
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The first step in analyzing the motion pictures was to deter-

mine the framing rate. Timing marks on the edge of the film occur every

1/120 seconds, and the film manufacturer places footage marks also along

the edge of the film. A one hundred foot roZl of film accelerates through

the camera so that the framing rate changes continuously. Therefore, a

curve of microseconds per frame vs film footage was plotted (Figure 28)

and the location on the film of each bubble is noted by the footage num-

ber.

The film was analyzed in a standard microfilm viewer, giving

an image magnification as determined by the scale arrow marked on the

inner venturi surface of about 6.6 x real size. Four pieces of infor-

mation were obtained for each spherical bubble image -- the film foot

number to obtain framing rate, the axial distance from the venturi throat

exit measured positive downstream and negative upstream, and the bubble

vertical and axial dimensions if it collapsed non-symmetrically, other-

wise just the spherical diameter. Time was then determined with an

arbitrary zero being assumed when the bubble axial position was at the

throat exit. Therefore_ time is negative if the bubble is upstream,

and positive if downstream from the exit. Since the bubbles do not

appear exactly at the throat exit point in one of the frames_ the posi-

tion for zero time was linearly interpolated between the two frames. If

all bubble translational velocities are the same, then all 597 observa-

tions should fall closely on a single curve of time from throat exit vs

distance from throat exit. Figure 29 is such a plot_ and included is a

curve of time vs position of a liquid particle based on the measured flow

rate and flow area assuming zero void.
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The actual liquid velocity may be larger than calculated if

the void content is large. For the limited field of view of the photo-

graphs, 360 frames were analyzed and the total void content measured°

Both spherical and nonspherical voids were measured, and the thickness of

the nonspherical voids along the line of sight estimated from still

photographs taken at 90 ° to the motion pictures° Most of the void volume

consisted of irregular shaped masses which occurred mostly downstream of

the throat exit, and remained relatively stationary. Expressed as a per-

cent of the volume in the diffuser only, and within the field of view,

the time-averaged void content was about 0.2 percent° However, as seen

in Figure 30 where the void content is plotted vs frame number, the void

varies considerably in time° The maximum void observed in any one frame

was 4°1 percent° Of the total volume of void observed in 360 frames,

28 percent was individual bubbles which grew spherically and 72 percent

was irregular masses°

Since the time average void content is very low, the actual

liquid velocity is very nearly equal to the calculated velocity based

on zero void content° From Figure 29, the bubble translational velocity

in the throat and for about 0°2 inch into the diffuser is 87 ft/seco The

liquid velocity in the throat is 74o6 ft/seco Therefore, the bubble slip

ratio of bubble velocity to liquid velocity is 1.17 in the throat, and

decreases to l oO in the diffuser° This is as expected since in an ac-

celerating flow in a falling pressure gradient the bubbles are accelera_

ted faster than the liquid because of their lower density°
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The normalized bubble radius R/Rma x from the high speed photo-

graphs was calculated as a function of time based on the first observed

maximum on the film. Since some bubbles had the same maximum size in two

frames the first frame was taken as the zero time reference. An equi-

valent bubble radius was defined for that portion of the collapse where

the bubbles bec_m_e non-spherical. The volume was assumed to be equivalent

to an ellipsoid,

4

Volume = _ _ -----

where A , B , and C are the axes.

ABC

222

For the observed bubbles, it was as-

sumed that the vertical ellipsoid axis was the same length as the axis in

the line of sight, or in other words the bubbles were axially symmetric.

The third axis was taken as the maximum dimension of the bubbles in the

direction of flow. If A is the vertical measured length and B the

axial length, then a sphere having the same volume as that calculated for

an ellipsoid from the above formula would have a radius of

I (A2B)l/3

The equivalent spherical radius and the normalized radius was calculated

for each of the 73 bubbles analyzed. The average maximum radius, Ro ,

was 36.5 x l0 -3 inch, and the maximumand minimum values of Ro for bubbles

which were tabuTatedwere 68.3 x lO -3 and 19.6 x lO -3 inch respectively.

Figure 31 is a plot of the normalized bubble radius vs distance

from the venturi throat exit. The curve drawn on this figure was used

along with the axial pressure profile to obtain the venturi pressure vs



-132-

observed bubble radius. Since all bubbles are normalized to their indi-

vidual maximum sizes, each of the 73 bubbles is represented by a point

at a normalized radius of 1.O. It is seen that the average venturi lo-

cation of the maximum size of the bubbles is about 0.15 inch downstream

from the throat exit° There is a quite extensive spread of the points

along the horizontal axis, indicating either that the pressure profile

in the venturi does not strongly govern the actual growth and collapse

region, or that, as is known to be the case, there is considerable

oscillation in the cavitation field and in the static pressures°

It was thought that a plot of normalized radius vs time measured

from the maximum bubble size for each bubble might help to eliminate the

scatter of Figure 31 if it were true that the static pressure gradient

did not completely govern the collapse region. Figure 32 is a plot of

the normalized bubble radii vs time from the first observed bubble maxi-

mum size. It is seen that there is still considerable spread in the data°

However, the bubble collapse can be definitely seen to slow down at nor-

malized radii of 0°5 to 0°6° This may indicate that inertia of the liquid

is not the only factor involved in the collapse, and perhaps that based

on numerical results, one can say that there is a considerably faster

internal pressure rise than that predicted for a small amount of gas

under adiabatic or isothermal compression° An alternative explanation

is that departure from ideal spherical symmetry results in a slower col_

lapse. Note that the growth curves are considerably steeper in the low

R/R ° range than the collapse curves o

L
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A plot of the data with a time normalization similar to that

used in the theoretical analysis requires the pressure differential be-

tween the liquid far from the bubble and the internal pressure. The

internal pressure can be assumed equal to saturated vapor pressure at

the liquid temperature as a first try, and the external pressure for

each bubble location is obtained from the measured pressure profile.

Therefore, the experimental profiles will be considered next.

Figure 22 shows the locations of the twelve pressure taps in

the venturio The first set of pressure profiles was obtained for six

flow conditions in the venturio The minimum velocity was determined by

the minimum surge tank pressure which, as previously indicated, must be

a positive gauge pressure. The flow rate was then adjusted until just

sufficient cavitation was visible to obtain pictures of individual bub-

bles. The nominal venturi throat velocity was about 80 ft/sec. The

maximum velocity was determined by the maximum range of the calibrated

orifice used for measuring flow rate (about 280 gallons per min). The

gas pressure in the surge tank was adjusted for the same appearance of

cavitation, resulting in a nominal maximum throat velocity of 120 ft/seco

At each of the velocities, profiles were obtained with air saturated tap

water (at STP) and with about 50 percent of saturation (STP) at temper-

atures between about 70°F and 80°F° Then the loop cooling was turned

off and hot, deaerated profiles were obtained at ll3°F for the lower

velocity and 133°F for the higher velocity° A normalized suppression

pressure was calculated, defined as pressure above vapor pressure divided
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by the liquid kinetic pressure in the venturi throat, ioeo, "cavitation

number". The results are shown in Figures 33 and 34° In all the curves

except those for the high temperature, the upper row of pressure taps

gives a higher pressure than the lower row, in the vicinity of the ven-

turi throat° It was thought that this might have resulted from a slight

difference in the 1/4 inch throat opening across the three inch width of

the flow area° For example, a change in the throat size from 0°250 x 3°0"

to 0°240" x 3.0" causes an 8.6 percent increase in the kinetic pressure

at the same flow rate° Unfortunately, no zero cavitation, ioeo, single-

phase flow, pressure profiles were included in the first runs so it could

not be determined whether the cavitation c2.>_d caused the non-s.ymmet_-_c

behavior or whether other effects as the possible slight differences in

flow area dimensions due perhaps to the clamping arrangement on the plex-

iglas venturi, etco, caused them°

Another set of pressure profiles were obtained after the ven_

turi had been dissassembled and then reassembled with a slightly differ-

ent clamping arrangement_ The same flow conditions were used, with some

additions at each flow rate and temperature° The normalized pressure

profiles are shown in Figures 35 to 37. Each curve represents average

values of the normalized pressures of from two to five runs° Two addi-

tional cavitation conditions were used: zero cavitation, plotted with

an arbitrarily selected minimum normalized pressure, and visible initi-

ation, corresponding to the first visible trail of tiny bubbles from the

two taps closest to the throat exit° In each of these profiles, all
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points fall on the same smooth curve, so it is quite probable that the

method of clamping the venturi can be important in maintaining uniform

flow and pressure across the venturi width° In all further analyses,

the second set of curves is used°

There was no significant variation in the appearance of the

cavitation between the first and second set of curves° Still pictures,

which were taken at the same time that the first set in Figures 33 and 34

were obtained, are shown in Figures 38 to 45° The arrow which was scratched

on the inside flow surface is clearly visible in most of the photos° It

is 0°205 inch long, and the tip of the arrow is at the throat exit and

points in the direction of flow. For most flow conditions, the scratched

arrow does not seem to act as a nucleating center for cavitation° Both

those instances, shown in Figures 40 and 44, where the scratch does ini-

tiate a cavitation cloud are for high temperature water.

The high speed photography was obtained with a cavitation con-

dition similar to the photograph in Figure 38 and to the normalized pres-

sure curve in Figure 35 marked "Cavitation to 0°75"° It is seen in

Figure 35 that there is a significant difference in the pressures near

the throat exit for different cavitation conditions° The normalized

pressures for slightly different flow velocities is of course the best

means of plotting the data, but it is necessary to have the actual pres-

sure in the venturi to normalize the data on bubble radius obtained from

the high speed photographs. The actual flow rates and absolute pressures

for the curves in Figure 35 were well controlled, so that the average
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Figure 38. S t i l l  Photograph, 3psec Exposure, 81.4 f t / sec ,  
2.05% Air Content by Volume, 68.8"F. 
i s  0.205" Long and Tip i s  a t  Throat Exi t .  

Arrow 

Figure 39. Still Photograph, 3psec Exposure, 82.3 f t /sec,  
0.93% A i r  Content by Volume, 70.5"F. 
i s  0.205" h n g  a116 T i p  i s  a% Thmat Extt. 

Arrow 



-144 - 

Figure 40. S t i l l  Photograph, 3psec Exposure, 83.3 f t / s ec ,  
0.699% A i r  Content by Volume, 112°F. Arrow 
i s  0,205'' Long and Tip i s  a t  Throat E x i t .  

Figure 41. S t i l l  Photograph, 1.2psec Exposure, 80.5 f t / s ec ,  
Low A i r  Content, -70°F. 
t he  Pressure Taps a re  on the  Top Half, and Flow 
i s  L e f t  t o  Right. 

Venturi i s  Rotated so 
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1 -  

Figure 42. S t i l l  Pnotograph, 39sec Exposure, 123 f t / sec ,  
2.31% A i r  Content by Volume, 78.4"F. 
is  0.205'' Long and T i p  i s  a t  Throat Exit. 

Arrow 

- 

Figne 43. S t i l l  RmtopaTh, 3psec b o s u r e ,  vo f t / sec ,  
0.95% A i r  Content by Volume, 77.O"F. 
i s  0.205'' Long and T i p  is a t  Throat Exit. 

Arrow 
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1 

Figure 44, S t i l l  Photograph, 3psec Exposure, 116. f t / sec ,  
0.82% Air Content by Volunie, 136"~. 
i s  0.205'' Long and Tip i s  a t  Throat Ex i t .  

Arrow 

Figure 45. S t i l l  Photograph, 1.2psec w o s u r e ,  115. f t / sec ,  
Low Air Content, -78O~. 
the  Pressure Taps a re  on the  Top Half, and Flow 
is  Left t o  Right. 

Venturi i s  Rotated so 
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values of the pressures above vapor pressure, (p - pv) , for several

different runs were appropriate values to use for comparison to the bub-

ble photographs. Figure 46 is a plot of the average unnormalized pres-

sures for visible initiation and for cavitation to 0.75 inch. These

curves are at the ssme flow rate, the only difference in the loop set-

tings being an increase in the surge tank pressure by an average of 2.7

psi. At 0.5 inch from the throat exit the pressure rises by 9.0 psi.

Therefore, a zery slight change in cavitation condition, even consider-

ably less than that of the two curves in Figure 46, can have a very

significant effect on the pressures near the throat exit° It is in

this region where the photographs were taken. The field of view extended

(from the throat exit) 0°926 inch downstream and 0.394 inch upstream°

The location of the bubbles within this field can be accurately measured,

as sho_n by the very smooth curve with small scatter in Figure 39° How-

ever, a small oscillation in the cavitation field, which is common, means

a slight shift of the location of the sharp pressure rise and a large

change in the local pressure°

The pressure differential, (p - pv) , is used in a normalized

time, t', according to

I

In the incompressible numerical solution for collapse, a similar normal-

ization was used except that the initial value of the quantity (p - pv )
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was used instead of the instantaneous value which will be used here.

For a given bubble, the local pressure at the known venturi location is

obtained from Figure 46, and the time is measured from the film frame

with the first maximum bubble size° The normalized time was thus obtained

for ten bubbles, arbitrarily selected from the 73 observed, for the curve

"Cavitation to 0.75", and plotted with normalized radius in Figure 47 .

A comparison to Figtu-e 32 indicates somewhat less scatter whc.u the no:'-

realized time is used.

D. Comparison of Theoretical and Experimental Collapse Curves

It is desired to obtain a plot of normalized bubble radius vs

time for the average observed bubble in order to be able to make a com-

parison with a calculated curve° The calculated curve, however, should

be obtained from the same variation of external liquid pressure as a

function of bubble radius° Accordingly, a best curve was drawn through

the points of Figure 31 for normalized bubble radius vs distance from

throat exit° At a given bubble radius, the distance from the throat

exit was obtained and used to get the pressure from the pressure profile

in Figure 35 for cavitation to 0°75 inch for high air content. A plot

of normalized bubble radius vs bubble environmental pressure was obtained

as shown in Figure 48° A curve was approximately fitted to the experi-

mental curve resulting in the following equation

÷ 0.0?_

R _ - O, 25
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where (P " Pv) is measured in atmospheres; R' _> 0.3. This equation

was used as an external function in the incompressible solution to give

the pressure, above a constant vapor pressure in the bubble, in the

liquid far from the bubble during collapse. The initial pressure is

0.0733 atm. The internal gas pressure was assumed to be O.OlO atm

initially and assumed proportional to (1/R'3)l'3o Other parameters

were those of water, and the maximum radius was the average maximum ob-

served, i.e., 36.5 x lO "3 in. The collapse curve obtained is shown in

Figure 32. The curve compares with the experimental points to a normal-

ized bubble radius of 0.5. Thereafter, the calculated collapse stops

abruptly at R' = 00164 because of the rise of internal gas pressure,

whereas the experimental points indicate a gradual slowing down of the

bubble wall velocity° The maximum calculated wall velocity was 48.2 ft/sec,

near the final radius. The maximum experimental wall velocity was be-

tween 12 and 20 ft/sec, and occurred nearer the beginning of collapse_

The assumption of an adiabatic gas compression inside the bubble is of

course not justified in this case. A low initial internal pressure is

necessary, but a more rapid pressure rise with decreasing bubble radius

is needed. Perhaps the observed behavior is indicative of a substantial

departure from thermal equilibrium in that the vapor within the bubble

begins to behave as a perfect gas at that portion of the curve where the

departure from the analytical prediction is observed. If so, this condi-

tion is reached earlier than predicted by previous investigations. (23)

The appearance of the collapse curve is similar to the theore-

tical collapse curves of Florschuetz and Chaoo (45) Their curves follow
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the pure inertia-controlled collapse curves, then the collapse slows down,

or even rebounds depending on the thermal effects° Several rebounding

bubbles are included in Figures 31 and 32, and also the general behavior

of the time-normalized curve in Figure 47 is the same shape as the theo-

retical curves for a combined influence of inertia and heat transfer as

considered by Florschuetz and Chaoo They define several normalized para-

meters which they use to determine whether inertia or heat transfer or

a combination of both effects is the predominant collapse mechanism°

The parameters used were:

Ja = Jakob number =

C __

The usual thermodynamic parameter appearing in cavitation literature (92)

is defined as

which has dimensions of 1/ft because of the term 2_H, representing

liquid hea, This is obviously closely related to the Jakob number°

Several corrections were applied to the parameters by Flor-

schuetz and Chao (45) to take account of the non-linear Variation in vapor

pressure with temperature and to define a suitable average vapor density°
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Using only the quantities above, the parameter Bsa t = ja2/ _ was

defined, and corrections to this value of B resulted in a quantity,

Bef f , such that Bef f is always larger than Bsat. For values of

Bef f _ i0o3 they concluded that liquid inertia control is assured° The

value of Bsa t for the venturi in the present investigation was calcula-

ted using the average pressure from Figure 46 at the location where the

bubble collapsed most rapidly as determined from Figure 31 _ namely 0°25

to 0.35 inch downstream of the throat exit° The value of Bsa t thus

calculated was 28°9, and if appropriate corrections are made to obtain

Bef f it would be even larger° Therefore , using the criteria of Flor_

schuetz and Chao, (45) the bubble collapse in the venturi should be com-

pletely controlled by liquid inertia, whereas the curve appears similar

to those theoretical curves presented for the case which includes heat

transfer effects°

The presence of gas in the bubbles is not accounted for by the

above analysis, and Florschuetz and Chao analytically estimate the effects

of gas for only the case of purely heat transfer controlled collapse°

It is possible, then, that their analysis is appropriate if there were

no gas present° In the detailed photographic analysis herein, the water

was about saturated with air at one atmosphere, so there could well have

been significant quantities of air inside the bubbles although there is

no direct measurement possible° However, similar films with water con_

taining the minimum attainable level of air for the equipment used, namely

0°77 percent by volume at loop temperature and i atm (ioeo, 39 percent
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of saturation at 1 atm or 9.3 ppm by weight) also indicated identical

bubble behavior in regard to shape of bubbles and rebounding bubbles.

The fact that the reduction of dissolved gas by more than 1/2 did not

prevent the oecurrance of bubble rebound* suggests that there may not

be a significant amount of gas diffusion into the bubbles during bubble

growth, even for saturated liquid. Treaster, (94) in an investigation of

cavitation hysteresis, presented an analysis by Parkin and Kermeen (93)

to calculate the bubble growth times due to gas diffusion. The analysis

inaludes the effect of a relative velocity between bubble and liquid

which would tend to increase the growth rate by diffusion because the gas

concentration gradient near the bubble surface is constantly maintained

large. The relative bubble-liquid velocity in the venturi throat and

slightly downstream was 12o4 ft/sec as obtained from Figure 29° Both

the largest and smallest values of the observed bubbles when at their

maximum sizes were used, and the pressure surrounding the bubble was taken

as the average at the first four pressure taps in the venturi for the

same conditions as in the high speed filmo The largest bubble actually

grew from 18o9 to 68.3 mils in 660 _sec and the analytically predicted

gro_-bh time based on diffusion was 4°2 _sec. The smallest bubble grew

from 9-3 to 19.6 mils in 409 _sec and the analytic growth time was 0.69

_sec. Thus the observed growth times were from 190 to over 600 times

longer than the theoretical. Treaster (_4) also presented another analysis

*It has been suggested in the past that rebound would only occur in

liquids with high gas content. This is not borne out by the present

observations over a relatively narrow range of gas content.
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ignoring both velocity transport 8_nd liquid inertia, and the growth times

were considerably longer° One may conclude that the diffusion of gas into

the bubble during growth is probably significant, but the actual quantity

of gas is difficult to determine because of the flow situation° It must

be _oted that the min._uum measured pressure in the venturi was always

above the liquid vapor pressure by the order of one psi or more, and yet

cavitation occurred. The analysis just mentioned, by Treaster, indi-

cated bubbles would grow by gas diffusion in such circumstances° Also,

cavitation at the pressure taps; and local liquid turbulence mean that

the measured value of pressure at the venturi wall may be well above the

minimum local and instantaneous liquid pressure°



V. CONCLUSIONS

A. Viscosity

The predominant effect of shear viscosity is to increase the

liquid pressure at the bubble wall during collapse. The magnitude of

the pressure rise and the rapid change in density with respect to time

suggests that the usual Navier-Stokes equation may not be completely

satisfactory. That is, Stokes' assumption that stress is independent

of the time rate of change of density may not be appropriate.

Moderate increases in viscosity from a reference value for

water do not appreciably slow the bubble collapse. The bubble wall

velocity in the incompressible analysis decreases as viscosity is

increased. In the compressible analysis, moderate viscosity increases

cause higher bubble wall velocities for small bubble radii, probably

because of terms neglected ih the compressible analysis for the pressure

at the bubble wall. However, in both compressible and incompressible

analysis, the large limiting viscosity defined by Poritsky (19) does

cause the bubble collapse to abruptly slow down, and the complete

collapse time to become large, although it can not be verified con-

clusively numerically whether or not the time is actually infinitely

large as stated by Poritsky.

Calculation of the instantaneous viscous energy dissipation

rate for a typical bubble collapsing in an incompressible liquid gives

a rate of the order of 40 horsepower, indicating that local effects

such as heating can become significant.
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Very high time rates of density change in the liquid near a

collapsing bubble_ and high viscous shear stresses occur. A brief

review of some of the relaxational phenomenon in liquids indicates that

relaxation effects may exist for such collapsing bubbles. The possi-

bility that such effects are in part responsible for the phenomenon of

sonoluminescence is proposed.

Inclusion of the liquid viscosity and surface tension intro-

duces two scaling parameters into the equations of motion. The Rayleigh

type normalization and solution of the bubble dynamics equations is

therefore not generally appropriate_ since a solution is necessary for

each set of these two parameters.

B. Surface Tension

The effect of surface tension is most important at small

initial bubble radii. Usually the effect is small when the bubble has

started collapsing because other effects such as liquid inertia and

pressure at the wall (induced by viscosity) predominate even as very

small radii are attained.

C. Compressibility

The proportion of the energy available for collapse which

goes into compression of the liquid appears to be considerably more

than the viscous dissipation. Consequently, the collapse rate for a

compressible liquid is considerably less than that for an incompressi-

ble liquid since less available energy appears as kinetic energy.
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D. Damage Mechanisms

There is no shock formation* observed during the bubble collapse.

The pressure in the liquid at a distance equal to the initial bubble

radius does not apparently change enough to cause the observed damage

nor even change extremely rapidly during collapse. However, the rebound

of the bubble which contains a compressed gas forms a shock which,

according to Hickling and Plesset, (66) can cause damage to solids at

distances equal to the initial bubble radius. This suggests that bubble

migration during collapse may be required to place the bubble center

close to a surface so that either the pressures generated during collapse

can be damaging or the rebound shock, which originates from the final

collapse region of compressed liquid and/or gas, will not be too greatly

attenuated. The maximum final bubble pressure, and therefore maximum

outward moving pressure amplitude, depends on the initial amount of gas

and/or vapor in the bubble. Less gas permits the bubble to collapse

farther and the resultant pressure to be higher.

E. Experimental

Photographic observation of bubbles in water in a cavitating

venturi gave collapse rates comparable to those analytically predicted,

down to about one-half of the initial bubble radius. Thereafter the

experimental bubbles slowed down and some rebounded. Reduction of the

dissolved gas from about saturation to about 30 percent of saturation

did not eliminate the rebounding of the bubbles observed experimentally.

The rebounded bubbles appear to have roughened surfaces so that it is

*i.e., a condition where later pressure characteristics overtake those

starting earlier.
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difficult to know whether or not single bubbles or a multiplicity of

smaller bubbles is actually observed. The pressure rise in the venturi

diffuser was of the order of one atmosphere, and the rate of rise was

of the order of i0,000 ibf/in 2 sec. The fact that the bubble collapse

initially followed the analytic collapse governed by inertia, and then

slowed down or rebounded indicated a pressure rise inside the bubble

which is more rapid than an adiabatic or isothermal compression of gas.

Heating and evaporation at the bubble wall (45) probably is of signi-

ficance in the collapse even though the range of pressures and liquid

properties suggests that inertia should control the collapse. It may

be that deviations from thermal equilibrium causing the vapor within

the bubble to act as a perfect gas is partly responsible for the reduced

collapse rates.

Bubble collapse was asymmetric. The bubbles flattened on the

downstream (high-pressure) side, and the indentation thus formed some-

times appeared to move in the upstream direction as a jet, giving the

bubble a torus like shape.

_J
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APPENDIX I

RUNGE-KUTTA METHOD FOR NUMERICAL SOLUTION OF ORDINARY

DIFFERENTIAL EQUATIONS

where

dependent variable y .

2_x is the increment in

Consider first a single first order equation of the form

x is the independent variable and y' the derivative of the

If yj is the known value of y at xj , and

x , (xj+ 1 - xj) then approximately

A more accurate approximation would involve a higher order expansion

than the simple linear or first order expansion of Equation (A-2).

Galler (87) describes one of the methods known as the Runge-Kutta pro-

cess which is especially adapted to high speed electronic computers_

and which is available as a subroutine at the Computing Center of the

University of Michigan. Equation (A-2) gives a straight line approx-

(xj +_x , yj + ko) whereimation to the curve between (xj , yj) and

from Equation (A-2)

(A-3)

At the fractional distance m along the increment_ make another estimate

of the increment in y by using the derivative evaluated at this point
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Then, yet another estimate of the increment in y is madeusing ko

and k1

_E = _ _CX]+_ I _j. +CD-F)_o + r_l) (A-5)

and also

There are then four estimates of the increment in y , namely ko , kI ,

k2 , and k 3 , based on the known increment Zkx and on four calculations

of the derivative y' at four different (x,y) coordinates between

(xj,yj) and (xj +Zkx , yj +Ay) It remains to choose a suitable

average of these four values of the increment in the dependent variable

y . A weighted average is calculated such that

j

where

a+ b ,c ,d =1
(A-8)

It is desired to choose the coefficients so that an expansion of f(x,y)

in a Taylor's series is correct to fourth order terms_ (Ax) 4 . There-

fore, expand y in a Taylor series about yj , so that Yj+l is given

by

(A-8)
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where the derivatives are total derivatives of a function of two vari-

ables, or in other words using Equation (A-I)

i

11

Also, expand each of the k's in Taylor's series using the given

increments in x and y about xj , yj and substitute all of these

expansions into Equation (A-7) for 2_v and equate this to _y obtained

from the expansion of Equation (A-8). By comparing coefficients on the

two sides of the resulting equation, eight equations are produced with

ten unknowns, a , b , c , d , m , n , r , p , s , t . Gill (88) chooses

I

two of the ten, thereby uniquely specifying the other eightj in order to

best accomodate the solution by means of a digital computer, so that

there will be a minimum amount of temporary storage of quantities during

the analysis. He shows that the method can be extended to the solution

of a series of n simultaneous differential equations of the form

!



APPENDIX II

NUMERICAL SOLUTION FOR INCOMPRESSIBLE LIQUID

The solutions for the bubble wall velocity and the time elapsed

as functions of the bubble radius are obtained first. Selected values

of the velocity and radius are stored in memory during the machine

procedure. After the wall velocity curve is determined and printed 3

these stored values are used to determine the pressure and velocity

field throughout the liquid at the selected bubble radii. This proce-

dure is possible since the liquid is incompressible and therefore the

pressure field is completely determined once the wall velocity (and

acceleration as a function of velocity) is known.

The calculations necessarily involve dimensional quantities be-

cause of the scaling effect of the viscosity and surface tension para-

meters. In order to easily interpret the relative magnitude of the

variables, the input data to the program was in mixed units as follows:

Variable

R o - initial radius

Pm, Po - pressure

- viscosity

- surface tension

p= - density

Units for input data

mils (in. x i0 -B)

atmospheres

multiples of _o "' where

_o = viscosity of water

multiples of _o , where

oo = surface tension of water

multiples of density of water
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This method has the advantage that the new value of the dependent

variable at (x +Zkx) can be found using only the information available

at x _ namely the value of the function and its slope. Thusj if the

initial values of dependent and independent variables are known, the

integration then proceeds from that point without reference back to pre-

ceding values. Therefore_ no special computer instructions are necessary

to initiate the procedure if the derivatives can be calculated at the

initial values. In addition, the increment Ax 3 can be changed to any

arbitrary value prior to calculating the next value of y . This pro-

perty is used to good advantage when the independent variable is the

bubble radius in order to cover a several decade span by successively

reducing the increment in radius at each decade.



-167-

The output format included the input data, and solution for the

normalized variables, as previously defined, in tabular form. The equa-

tions which are solved by the Runge-Kutta method are

R' "R'j

O"

o

i

The initial conditions that U' = 0 at R' = I , cause diffi-

culty in the calculation of the derivative dU'/dR' . Therefore, an

approximation is made for values of R' _ 0.990. Since the velocity

is very smmll, the viscous term and the kinetic energy term are both

small and the change in [p_(R') - p_(R')] is assumed negligible. If

they are neglected, the equation is

_ I 2_'

which can be solved to give

Using the initial conditions, the constant of integration is

c = -2a'
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and therefore

= -2, R * 2. Ri (A-9)

Equation (A-9) is used for values of R' _ 0.990. Then R' is set equal

to 0.999999 and the velocity is calculated from Equation (A-9). This

velocity is used to start the Runge-Kutta procedure, and values of U'

compared well with the approximate solution to a radius of 0.990. The

increment in the independent variable R' is reduced as R' becomes

small so that the current value of R' is always at least i00 times

larger than the increment in R' . Only sufficient values of R' are

printed, in order to produce a good curve, so there are actually many

more steps made in the integration procedure than appear in the output.

Even though the machine has eight digit accuracy, the roundoff in R'

for a decrease from 1.0 to 10 -6 causes the current values of R' to

differ from exact multiples of the increment in R' . Therefore 3 a

change in increment is made after each decade change in R' , so that the

printed values of R' are simple numbers and can con_reniently be com-

pared from one output to another at the same values of R'

The pressure and velocity field require no integration once the

bubble wall velocity and radius are obtained. The selected values are

obtained from a table in memory and the pressure and velocity are simply

calculated for a given instant of time from the following algebraic

formulas
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= r" = r"

; R

Note that the liquid radius here is given in terms of the current bubble

radius R . This will not be possible later, when the pressure field in

the compressible case is considered because the pressure is calculated

along a characteristic path and time (and therefore bubble radius)

changes as this path is traveled. Therefore, the later liquid radius

normalization is different.

The internal bubble pressure Po(R') and the pressure at infinity

p_(R') are put into the program as external functions, so that they can

be changed _thout changing any other part of the main program. Several

special variables are specified in the input data for use as parameters

in the external pressure functions so that some variation can be conven-

iently effected by merely changing the input data card.

The solution was programed in the MAD (Michigan Algorithm Decoder)

language and run on the IBM 7090 computer. The following list compares

the notation for the variables as used in the computer program given on

the following pages.
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COMPUTERNOTATIONFORINCOMPRESSIBLELIQUID

Description Computer Notation

p (Ro)

po(Ro)

R
o

P

R'

dR'

r'

U'

t'

p'(R')

p'(_')

p '(R')

P'o(R')

dU '/dR '

dt '/dR'

U'

(primed quantities are normalized)

Initial pressure at infinity

Initial internal pressure

Initial bubble radius

Liquid density (multiples of water)

Bubble radius

Increment in radius

Radius in liquid

Bubble wall velocity

Time

Surface tension (multiples of water)

Surface tension (normalized)

Viscosity (multiples of water)

Viscosity (normalized)

Pressure at bubble wall

Pressure in liquid

Variable pressure at infinity

Constants read in as data to vary

external function

Variable internal pressure

Derivative of velocity

Derivative of time

Velocity in liquid

Stored bubble wall velocity

Stored bubble radius

PINF (atm)

PO (atm)

R0 (mils)

RH0

R

DELR

RL

U(1)

U(2)

SIGMA

D

MU

C

(R)

P

PEXT. (R_ PINF, PO_ Zl_ Z2)

ZI_ Z2, YI_ Y2

PINT. (R, P% PINF, YI, Y2)

ou(i)

DU(2)

V

SU (K)

SR (K)
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COMPUTER LISTING - INCOMPRESSIBLE LIQU]_

$COMPILE MAD, PUNCH OBJECT,PRINT OBJECT,FULL DUMP

MAD (24 SEP 1966 VERSION} PROGRAM LISTING .........

START

INITAL

GO

LOC(I)

LOC(2I

LOCI3}

READ DATA,PINF,SIGMA,MU,RO,RHO,PO, Y1,YZ,Z1,Z2
INCRMT=IgO00.

C=.720eMU/(ROt(((PINF-PO)'2[I6.22*RHO}.P..5|)

D=59.75*SIGMA/IRO*(PINF-POI*21[6°22}

PRINT FORMAT TA_HDItMU,SIGMAtPINFtRO,RHOtCtD

PRINT FORMAT TABHO3

EXECUTE SETRKD.|2tU(1}tDU(I),Q(1),RtDELR)

TAGI=I

TAG2=IO

THROUGH INITAL,FOR R=I.tDELRtTAG1.G.1CC

DELR=-I./INCRMT

U(I)=-(-2.-(ELOG.(R)÷Z.*D*((R-I.)/R))I.P°.5

WHENEVER TAG2.E.13

PRINT FORMAt OUTItRtUII)tO.fO.,LIQPRS. IRItPEXT.IR,PINFtPO

I ,ZI,Z2I

TAG2=9

END OF CONDITIONAL

TAGI=TAGI÷£

TAG2=TAG2+I

CONTINUE

PRINT FORMAT TABHD2

DELR=-I.E-6

R=.999999

U{I)=-I-2.*(ELOG.(R)+2.*D*{(R-I.I/RIII.P..5

U(2)=DELR/U{I}

J=l

SR(J)=R

SU(J)=U(1)

J=J+l

PRINT FORMAT NUTItRtU(I|,C.,U(Z]tLIQPRS°IR|tPEXT°(RtPINF_POtZ

1 1,Z2)

TAG2=I

TAG1=2

I=3

DELR=.9999-R

TRANSFER TO LOC|RKDEQ.|O))

DU(1}=-(I°5*U(II*U([)*R+C*U([}+2°*O÷R*(PEXT°(R,PINF,PQtZ£,Z2|

I -PINT.(R,PO,PINFtYI,Y2)))/IU(1)*R*R|

DU(2)=I./U(1)

TRANSFER TO GO

CONTINUE

TRANSFER TO LOCII)

WHE_EVER TAG£*LE.£O

DU{I)=-(I.S*U(II*U(£)*R+C*U{[}+2.oD+Re{PEXT.IRtPINFtPO, Z£,Z2!

I -PINT.IR,PO,PINF,YItY2}))/(Uil)*R*R}

PRINT FORMAT OUTItRtU(I),DU(1)*U(1)tUI2)vLIQPRS.(R),PEXT.

1 (R,PINF,PO,Z1,Z2)

WHENEVER TAGI.E.1

SR{J)=R

SU(J)=U[I)

J=J+l

END OF CONDITIONAL

TAGI=TAGI+I
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LOCI4)

LOC(5)

OELR=-I, E-4

TRANSFER TO GO

END OF CONDITIONAL

I=4

TAG1=1

PRINT FORMAT TABHD2

OU( I )=-( 1,5*U( I )*U(1 )*R+C*U ( ]. ) +2,*O+Ro ( PEXT. (Rt PINFt PU,Z1 t Z2 )

I -PINT.(R,PO,P[NF,YItY2)) )/(U(1)*R*R!

PRINT FORMAT OUTItR,U(1),DU(I)*UI1),U(2)tLIQPRS,(R)tPEXT.

1 (RtPINF,PO,Z1,Z2)

SR(J)=R

SUIJ)=U[I)

J=J+t

TRANSFER TO GO

WHENEVER TAGI.L.IC

TAGI=TAGI+ I

TRANSFER TO GO

OR WHENEVER TAGI.E.IO.AND.TAG2.L.9

DU( I )---( I. 5*U( i )*U( I)*R÷C*U ( I )÷2.tO+R* (PEXT° (R, PINFt PO,Z1, Z2)

I -PINT.IR,PO,PINF,YIeY2}) )/[Uil)*RtR)

PRINT FORMAT OUTIeR,U(EI,OU(II*U(1),U(2),L[QPRS. IR),PEXT.

I [R,PINF,PO,ZI,Z2)

TAGI=I

TAG2=TAG2e I

TRANSFER TO GO

END OF CONOITIONAL

I=5

PRINT FORMAT TABHD2

DU( I}---I 1.5*U(I )*U(I )*R+CtU( I)÷2.*D+Re(PEXT. [R,PINF,PO,ZI,Z2)

i -PINT.(R,PO,PINF,YI,Y2)) )I(U(1)oR*R|

PRINT FORMAT OUTI,R,UII),OUII)*UII),UI2),LIQPRS. (R),PEXT. IReP

I [NF,PO,ZI,Z2)

SR(J)=R

SU{ J)--U(1)

J=J+I

TAGI=I

TAG2=|

TRANSFER TO GO

WHENEVER OU(I).L.Q.,TRANSFER TO SLO(II

WHENEVER TAGI.L.IO0

TAGI=TAGI÷I

WHENEVER OELR+R.L..90_DELR=.gO-R

TRANSFER TO GO

OR WHENEVER TAGI.E.IOO.AND. TAG2.L.9

DU[I ) =-[ i. 5*U( I ) *U( I )*R÷C*U( I)+2.*D+R* (PEXT. (R,PINF, PO_ ZI, Z2)

I -PINTo(R_PO,PINF,YI,Y2)))/(U(1)*R*R)

PRINT FORMAT OUTI_R,U(I),DU(I)*U(I),U[2),LIQPRS°(R),PEXT.

i (R,PINF,PO,ZI,Z2)

TAGI=I

TAG2=TAG2+I

WHENEVER DELR÷R.L°.gGtDELR=.gO-R

TRANSFER TO GO

END OF CONDITIONAL

PRINT FORMAT TABHO2

DU(1)=-(I.5*U(1)tU(1)tR+C*U(1)+2.eD+R_[PEXT.(R,PINF,PO,ZI,Z2)

I -PINT.(R,PO,PINF,YI,Y2)) )/(U(1)oRoR)

PRINT FORMAT OUTI,R.U(1),DU(I)*U(1),U(2),LIQPRS.(R),PEXT.[R,P

I INF,POtZItZ2)

SR(J)=R

SU(J)=U(Ii
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LOC(6)

LL}C(7)

J:J+l

1:6

TAGI=I

TAGZ:I

TAG3=!OC?

DELR=-I.E-4

TRANSFER TO GO

WHENEVER OU(I)-LoC.,TRANSFER TO SLO(I)

WHENEVER TAGI.L.TAG3

TAGI:TAGI+I

WHENEVER R+DELR-L..ICtDELR=.I3-R

TRANSFER TO GO

OR WHENEVER TAGI.E.TAG3.AND.TAGZ.L.8

DU(II=-(I-S*U(I)*U(1)*R+C*U(I)e2.*DeR*(PEXT.(R,PINF,PO,ZI,Z2)

l -PINT.(R,PO,PINF,YItY2)))/(U(I)*R*R)

PRINT FORMAT OUTI,RtU(1),DU(1)*UII),U(2)tLIQPRS.(R)vPEXT°

i (R,PINFtPO,ZI,Z2)

WHENEVER TAG2.E.4

SR(J)=R

SU(J)=U(1)

J=J+l

END OF CONDITIONAL

TAGI=I

TAG2=TAG2+I

WHENEVER R+DELR.L..IO,DELR=.L]-R

TRANSFER TO GO

END OF CONDITIONAL

PRINT FORMAT TABHD2

DU(1)=-(I.5tU(1)mU(1)*R+C*U(I)+2.*D÷R*(PEXT.{R,PINF,PO,ZI,Z2)

i -PINT-(R,PO,PINF,YI,Y2)) )/(U(I)*R*R)

PRINT FORMAT OUTI,R,U|I),DU(I)mU(1),U(2),LIQPRS.IR),PEXT.(R,P

I INF,PO,ZItZ2)

SR(J)=R

SU(J)=U(1)

J:J+l

TAGI=I

TAGZ=I

I=/

TAG3=IOG

DELR=-I.E-4

TRANSFER TO GO

_HENLVER DU(1).L.].,TRANSFLR TO SLY{I)

NHENEVER TAGI.L.TAG3

TAGI=TAGI÷I

WH=NEVER R+DELR.L.._I_DELR:.OI-R

TRANSFER TO GO

OR WHENEVER TAGI.E.TAG3.ANO.TAG2.L.9

OU(1)=-(I.5*U(1)*U(i)*R*C*U(Z)+2.*D+R*(PEXT.(R,PINF,PO,ZI,Z2)

I -PINT.(R,PO,PINF,Yi,Y2)) )/(U(I)*R*R)

PRINT FORMAT OUTI,R,U(I),DU(1)*U(1),U(Z),LIQPRS. IR),PEXT.

I (R,PINF_PO,ZI_Z2)

WHENEVER TAG2.E.5

SRIJ)=R

SU(J)=U(I)

J:J+I

END OF CONDITIONAL

TAGI=I

TAG2:TAG2÷I

WHENEVER R+DELR.L..OI,DELR=.GI-R

TRANSFER TO GO
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LOCI8)

FINISH
ALPHA

END OF CONDITIONAL

PRINT FORMAT TABHD2

DU( I)=-( 1.5-U{ I }*U( i )*R+C*U( Z )+2.'D+R* (PEXT. (R,PINF,P8, Zl _Z2)
i -PINT.{R,PD,PINFtY].tY2)) )/(U|L)*R*R)

PRINT FORMAT OUTI,R,U[].),DU(].)*U(L)_UI2)tLIQPRS.(R),PEXToIR_P
I INFtPO,ZI,Z2)

SR(J)=R

SU(J)=U(1)
J=J+l

TAG1=1
TAG2=I

I=8
TAG3=IO0
DELR=-I .E-4

M=O

THROUGH FINISH,FOR VALUES OF DELR=-I.E-5_-I.E-6,-I.E-7_-I.E-8
I ,-I°E-9_-I.E-IO

M=M+I
PRINT FORMAT TABHD4tMtDELR

TRANSFER TO GO
CONT INLIE

WHENEVER DU(1).L.O.,TRANSFER TO SLO(1)
WHENEVER TAG1.L.TAG3

TAGI=TAGI+I

WHENEVER R+DELR. L .-I00 .*DELR, DELR=- {R+IO0 °*DELR)
TRANSFER TO GO

OR WHENEVER TAGL.E°TAG3.AND.TAG2.L.9

DU(1)=-(l.5*U(L)iU(1)*R+C*UII)+2.*D+R*(PEXT.(RtPINFtPO_ZII, Z2)

i -PINT.(R,PO,PINF,YL,Y2)))/(U(1)*R*R)
PRINT FORMAT OUTI,R,U(I},DUII)*UI1),UI2)_LIQPRS. IR)vPEXT.

I (R,PINFtPO,ZItZ2)

WHENEVER TAG2.E.5
SR(J):R

SUIJ)=U(1)
J=J+l

END OF CONDITIONAL
TAGI=I
TAG2=TAG2+I

WHENEVER R+DELR. L.-IO0. *DELR, DELR=- (R+ I00 °*DELR)
TRANSFER TO GO

END OF CONDITIONAL

PRINT FORMAT TABHD2
DU( I)=-| 1.5*U(1)*UII)*R÷C*UII)÷2.*D÷R*(PEXT.IR_PINFtPO,Z1,Z2)

I -PINT.(R,POtPINFtYIvY2}) )/(UII)*R*R)
PRINT FORMAT OUTIpR,U(1)tDU(1)*U(1)_UI2)tLIQPRS.(R)tPEXT.IR_P

I INF,PO,ZI,Z2)
SR(J)=R

SU(J):U(I)
J=J+1

TAGI=I
TAG2=I

CONTINUE

THROUGH PFIELD,FOR K=I,1,K.E.J
PRINT FORMAT TABHDS,SR(K)
I=1

THROUGH PFIELDtFOR RL=I.t.ltI.G.SD
P=PEXT.(SRIK),PINFtPO,ZI,Z2)*IRL-I.)IRL÷ISU(K)ISU(K))I(2.*RL)

I -{SU(K)*SU(K))/(2.*RL*RL*RL*RL)-(SU(K)*C÷2.*D)I(SR(K)*RL)÷PIN
2 T. (SR (K) ,POtPINF tYI,Y2)/RL

V=SU(K )/(RL*RL )
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PFIELD

SLO( I )

SLOC{b)

SLOC(4)

SLOC(5)
FRST([)

SLOC(3)

SLOC(I)

SLOC(2)

PRINT FORMAT OUTP,RL,RL*SR(K)tPtV
1=1+I

CONTINUE

TRANSFER TO START

CONTINUE
PRINT FORMAT TABHD2

DU{Z)=-[I.B_U{1}*U(I)*R+CeU[I)÷Z.*D+Re[PEXT.(R,PINFtPO_ZIIZZI
I -PINT.(R,PO,PINFIYltYZI))/(U(1)_ReR)

PRINT FORMAT OUT1,R,U(I),OU(L)eU(Z),U(2),LIQPRS.(R),PEXT.[R,P
I INFtPOtZItZ2I

TAGI=L
TAG2=Z
TAG3=I

TEN=Z.
M=I5

TEMUZ=U{I)
TEMU2=U(2)
TEMR=R

DELR=-R/(IOO.*TEN)

U(Z)=TEMUI
U(2|=TEMU2
R=TEMR

DELR=-R/(IOO.mTEN)

TRANSFER TO FRST(RKDEQ.(O))

DU(I)=-(I.5*U{I)wU[I|*R÷CmU(1)÷2._O+R*(PtXT.(R,PINF,PO,ZI,Z2)
I -PINT.(R_PO,PINF,YI,Y2)))/(U(I)mR*R)

DU(2)=I.IU[I)
TRANSFER TO SLOC[RKDEQ.(O)]

WHENEVER U[I).G.G.
U(Z)=O.

TAG3=2
END OF CONDITIONAL

DU(1)=-(I.5*U(1)*U(1)*R+C*U(I)+Z.*D+R*(PEXT.(RtPINF,POtZI,Z2)
I -PINT.[R,PO,PINF,YI,Y2)))I(U(I)*R*R)

DU(2)=I./U(1)

TRANSFER TO SLOC[3)
WH[NEVER U(1).G.C.,TAG3=2
WHENEVER TAG3.E.2

TEN=IO.*TEN

WHENEVER TEN.G.1.E25,TRANSFER TO ALPHA
TAG3=I
TRANSFER TO SLOC(4)

END OF CONDITIONAL
WHENEVER TAGI.L.I3

TAGI=TAGI+I
OR WHENEVER TAGI.E.IO

DU(ZI=-(I.5*U(1)tU[I)*R+C'U[I)+2.*D+R*(PEXT.[R_PINF,POpZI,Z2)
Z -PINT.(R,PO,PINFtYZ,Y2)))I(U{I)*R*R)

PRINT FORMAT OUTI,R,U{I),DU(1)mU(1),U(2)tLIQPRS°(R)tPEXT.(RtP
I INF,PO,ZZ,Z2)

TAGI=L

TAG2=TAG2+Z
END OF CONDITIONAL
WHENEVER R.LE.I.E-8

DU(I)=-(I.5*U(1)*U(I)*R+C*U[1)+2.'D+R*{PEXT.(R,PINF,PO,ZI,Z2)
1 -PINT.(RtPOtPINFtYZtYZ)))/(U(L)eReR)

PRINT FORMAT OUTZ_R,U{1),DU(Z)eU(1)tU(2)tLIQPRS°(R)_PEXT°(RtP
1 INF_PO,ZL,Z2)

TRANSFER TO ALPHA
END OF CONDITIONAL
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wHENEVER TAG2.E.M.OR.(TAG[.E.I.AND.TAGZ.LoIO)

SR(J}=R

SU(J)=U(1)

J=J+l
END OF CONDITIONAL

WHENEVER TAGZ°E.M,M=M+15

WHENEVER TAG2.LE.150
TRANSFER TO SLOC(6)

OR WHENEVER TAG2.G.150

TRANSFER TO ALPHA

END OF CONDITIONAL

INTEGER TAGI,TAG2,TAG3,I,MtJ,K

DIMENSION UI2)tDU(2)tQ(2I

DIMENSION SR(75),SU(751

VECTOR VALUES TABHDI=$1MItSg,69HSOLUTION TO PORITSKY BUBBLE C

I OLLAPSE IN VISCOUS,INCOMPRESSIBLE LIQUIDIIHO,SgtB6HTHE LIQUID

2 CONSTANTS,NORM4LIZED TO THE VALUES FOR WATER AT [ ATM AND 20
3 DEGREES C, AREIIHO,S20,25HVISCOSITY MU=,IE15.611

H ,S20,25HSURFACE TENSION SIGMA=,IEIS.61IH _S20,25HPRES. A

5 T INFINITY PINF=,IEIS.611H tS2Dp25HINITIAL RADIUS (MILS) RO

6 =,IE15.6/1H ,S20,25HDENSITY RHO=,IEI5.6/IHC,Sg,6
7 OHTHE CORRESPONDING VALUES OF THE DIMENSIONLESS PARAMETERS AR

8 EIIHO,S2CI9HVISCOSITY,SB,2HC=,IEI2.611H ,S2G,IgHSURFACE TENSI
9 ON D=,IE12.6*$

VECTOR VALUES TABHOZ=$1H-*$

VECTOR VALUES TABHD)=$1H-,SS,4HR/RO,Sg,BHVELOCITY,SS,12HACCEL

I ERATION,STt_HTIME,Sgt8HPRESSUREpSS,gHEXT.PRES.*$

VECTOR VALUES TABHD4=$1H+tSgI,2HM=,II3,SS,SHDELR=,IE15.6*$

VECTOR VALUES TABHDS=$IHI,S),gAHPRESSURE AND VELOCITY FIELDS

IN THE LIQUID WHEN THE RATIO OF BUBBLE RADIUS TO INITIAL RADI

2 US IS _[EI2.611H-,SI2,14HRADIUS IN LIQ.,SI,I_HLIQ. RADIUS/RO,
3 S3,12HLIQUID PRES.tS2,13HLIQ. VELOCITY*$

VECTOR VALUES OUTI=$1EI4.ApSE15.6*$

VECTOR VALUES OUTP=$1H ,S[0,4E15.6"$

INTERNAL FUNCTION LIQPRS.IX)=PINT.(XtPO,PINF,Y[tYZ)-(2.*D÷C*U

[ ([))IX

END OF PROGRAM

-256
*257
*258
*Z59
*260
.261
*262
*263
*264
*265
*266
*267
*268
*269

"27Q

*273
*Z73
*273

*270
-27_
-2:7_
-27_
*273
*273
-271
*272
*272

*273

*_7_
-274

*_74

*_7q
*_75

*_7b
*277
*Z7T
*278

THE FIRST OCCURRENCE OF A FLOATING POINT VARIABLE USED AS A SINGLE OR DOUBLE SUBSCRIPT WAS IN THE STATEMENT ENDING
GO TRANSFER TO LOC(RKOEQ.(_)} D34 _"
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$COMPILE MAD,PUNCH OBJECT,PRINT OBJECT

MAD (24 SEP 1964 VERSION) PROSRAM LISTING .........

LOCI

EXTERNAL FUNCTION(R,PI_F,PO,ZI,Z2)

ENTRY TO PEXT.

WHENEVER ZI.[.C.

FUNCTION RETURN PIi_F/(PINF-PO)

OR WHENEVER ZI.E.I.

WHENEVER R.LE. .3

FUNCTIUN RETURN C.82/(PINF-PO)

OR WHENEVER R.G..3

FUNCTION RETURN (._4/(R-.25}+.)2}/(PINF-PO!

END OF CU_DITIOr_AL

OR aHENEVER Z1 .E. 2.0

WHENEVFR R .LE. :.4

FUNCTI_ RETURN(,:.787+(.4-R}*3.I5)/(PINF-P0)"

UR WHENEVER R .G.C.4

X:(_.TZ-RI/L.33

ALPHA:K

ANSWR:X

COEF=I.

THROUGH LOCI,FOR N=2,1,.ABS.ALPHA.L. .O_CI*.ABS.ANSWR

A=Z.*N-I.

B=Z.*N-2.

C=2.*N-B,

COEF=C/B*COEF

ALPHA=(CDEF*X.P.A)/A

ANSWR=ANSWR÷ALPHA

CONTINUZ

FUNCTION ,_ZTU_N(C.255*A_S_R_.45}/(PINF-PO}

_D UF COnDITIOnAL

END UF C()NDITIO_AL

INTEGER N

END OF FUNCTIO;_
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$COMPILE MAD,PUNCH OBJECT,PRINT OBJECT

MAD |24 SEP 1964 VERSION) PROGRAM LISTING .........

EXTERNAL FUNCTIONIR_POtPINFvYItY2)
ENTRY TO PINT,

FUNCTION RETURN (PO/(PINF-PO))*R.P.(-3.*YI)
END OF FUNCTION



APPENDIX III

NUMERICAL SOLUTION FOR COMPRESSIBLE LIQUID

The solution for the compressible liquid is similar to that

for the incompressible liquid in that the bubble wall motion is com-

pletely determined first, and then the pressure and velocity fields are

determined along an outgoing characteristic path for selected initial

conditions at various bubble radii. Equations (36) through (40) for

motion of the bubble wall are written as follows

d R aR\Lt-C/ RLt b( C dR

H(P) = rl("P_,+b) [< P.t3 "_" - I ](n_l) _, _-B/I (A-14)

R R
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It is necessary to analytically obtain the term dH/dR

as follows.

= + I/_-

in Equation (A-IO)

Equation (A-16) is substituted into Equation (A-10) resu_bing in

(A-Z6)

+B t--

If the above equations were normalized in a manner similar to the incom-

pressible equations, they would remain essentially unchanged, still con-

taining the scaling parameters _ and _ , so there is no analytic

advantage to such a procedure, Instead, it was decided to use a normal-

ization similar to that of Flynn (60) which permits a convenient interpre-

tation of the real magnitude of the normalized variables° The following

constants for water at 1 atm and 20°C are used°

Po = 62o31 lbm/ft 3 (60)

Co : 4869°5 ft/sec (60)

do = 4,982 x i0 -3 lbf/ft (69)
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_o = 2.088 x 10 -5 ibf - sec/ft 2 (9o)

ao = i atm = 2116.2 ibf/ft 2

The variables are then normalized for computation as in the following

table, where again the primed quantities are normalized. For convenience,

the notation used for these variables in the computer program is also

given. Several dimensionless quantities occur in the normalized equations,

involving the above constants for water. It is convenient to designate

these as follows.

2

KI - D°c° - 2. 1666 x 104
aog

_o 2.8292 x 10-2 (when Ro
K2 - aoRo - Ro

is in mils, in. x 10 -3 )

aoCo 0.57599 (when R is in mils)K3=
aoRo Ro o

_o g 2.6_84 x 10 -5 (when R is in mils)
K4 - CoPoRo - Ro o

Substitution of the normalized variables into the equations gives the

following set of equations which were programed for computer solution.
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_'c_$kp',8'

(' '_+B, ) _ coo= _ (-P<_+8)u_ e<,:

(P') =

H'(_') = ....... I
P'(n') : -Po'(R') z J_,.,+-'- _#n_/_.'_.L'

¢_' k'

I

The variables P_ ' Po' and dPo'/dR' are specified in external functions,

and for a given function there are one or two parameters which will alter

the bubble behavior_ the values of which can be inserted as data without

changing the program at all. Als% the external functions can be com-

pletely changed in form without altering the main program, just as in the

solution for the incompressible liquid°

The initial conditions of U' and R' present some difficulty.

It can be shown that for very small velocity and for R' _= i_ the equation

of motion is approximately

<7t.t_ -., /4'
d,k' ....R' l.t'
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Assume that for small U' , the variation in H' with R' is small

so that it may be assumed constant. Therefore,

u' _= -Veil' in R' (19)

where the velocity logarithmically approaches zero as R' approaches

1.O. In order to solve Equation (A-19), where H' is a function of U',

a repetitive procedure was used at a fixed value of R' = 0.9999, and

P' and then H' and U' were calculated. Several repetitions gave a

set of values of U', P', and H' which satisfied (A-19) exactly. These

values of U' and R' were used as initial conditions in the Runge-

Kutta procedure. Also, Equation (A-19) was solved for ten increments in

R' from 0.9999 to 0.9990 and the curve compared with that obtained from

the Runge-Kutta solution and no significant difference in magnitude or

slope of U' vs R' was apparent.

The bubble wall velocity and the time are obtained as functions

of bubble radius with no reference to the velocity or pressure fields in

the liquid° The Kirkwood-Bethe assumption on wave propagation permits

such a procedure. At 97 selected values of the bubble radius a charac-

teristic path originating on the bubble wall is traced through the liq-

uid_ The initial values for this procedure are obtained from a table

of values of U', H', T', R', P' and C' at the bubble wall which is

stored in memory during the solution for the wall motion. The equations

for the characteristic path, 41, 46, 47, 48, are as follows
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g

" C r2 C--r-_

The normalized form of these equations is unchanged except that the

variables then represent normalized quantities,

The solution to these equations is sets of characteristic curve%

as many sets as desired up to the total number of increments in bubble

wall radius used in the solution for the bubble wall motion° A set of

these curves was initiated from each of the 97 printed values of bubble

radius (many more than 97 increments were actually used in computing bub-

ble wall motion however), Since time is the independent variable used

along a characteristic path, each set of curves consists of a table with

five columns -- tim% radial position, pressur% velocity, and Mach

number -- ar_-anged so that one can enter the table in computer storage

with a given value of time and obtain the corresponding values of the

other four variables° There are 56 values of these variables printed

for each set of curves (although more intermediate values are calculated),
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but only the first 40 of these are stored in memory. The 97 sets of

curves, each set with five variables and LOvalues, are stored as they

are computedin a three dimensional array called URV(K, M, L) by the

internal function STURV._giving a total of 19,bOOstored values along

characteristics.

After completion of the computation, printing and storage of

the characteristic curves, the values of the variables throughout the

liquid at a fixed instant of time were obtained, rather than the values

along a path where time _as continually changing. The value of time at

the start of each path, which corresponded to the time at the bubble

wall, was selected, and the table of each set of curves which originated

at an earlier time was entered and the values corresponding to that time

were selected and printed for each of the four variables; radial position,

pressure, velocity, and Machnumber. A library subroutine was used

which provided a linear interpolation in the table. Up to a fifth order

interpolation could have been specified as easily, but for computing

time economythe first order waschosen. The printed values along the

characteristic curves showthat a linear interpolation between the avail-

able values provides a very good approximation to a smoothcharacteristic

C1_e.

The very rapid change in variables with respect to time when

the bubble wall velocity was large, necessitated careful consideration

of numerical accuracy. The machine has inherently eight digit arithme-

tic accuracy, which was not sufficient for the later stages of bubble
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collapse with the time normalization used. Since in the formulation of

the problem for bubble wall motion, the variable, time, does not appear

explicitly in any form but as the derivative_ dT/dR _ the actual numer-

ical _alue of time maybe changed at will during computation. Therefore,

in computing the bubble wall motion_ before time becameof such a magni-

tude that there was no significant change in eight digits for each step_

the time zero was changed. Similarly_ along a characteristic curve time

could be initialized starting at the bubble with the value zero thereby

providing a muchmore significant numerical change as the path was com-

puted. However_this method introduced someadditional difficulties

whenthe tables of characteristic curves are entered with a value of time

based on the samenormalization but with a different zero point° Never-

theless; this difficulty was overcomeand the resulting characteristic

curves could be plotted such that each curve had an accuracy to at least

the eleventh significant digit_ with the important interpretive conven-

ience of being related to real time by a simple constant normalizing

qaantityo
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NORMALIZATIONANDCOMPUTERNOTATIONFORCOMPRESSIBLELIQUID (CONT'D)

Variable Normalized
Variable

TCo/Ro T'
U/Co U'

H/Co2 H'

R/Ro R'

P/ao P,

C/Co C'

Description

Stored values of variables
at bubble wall which are
used to initiate character-
istic path

ComputerPro-
6ramNotation

ST

SU

SH

SR

SP

SC

Initial internal pressure (atm) A

Increment in bubble radius

(negative) DELR

n n

(n-$n

(n-_/2n

1/z

PoCo2/ao g

Co/aoRo

_oCo/aoRo

_og/CoPoR o

dU/dR

dT/dR

K1

½

dU'/dR'

dT'/dR'

I
Constant in e_ation of state

(=7.)

Constantsj evaluated for

repetitive computational

efficiency

Constant = 2.166634 x 104

Surface tension parameter

Viscosity parameter

Viscosity parameter

Velocity derivative

Time derivative

N

EXI

EX2

NX3

KI

K2

K3

K4

F (i)

F (2)

7 Exponent in internal pressure

variation as (R,)-3 GAMMA

Input data to determine DELR INCRHr

Variable pressure in equa-

tion of state expressions =

FI:T. (R, X)+B P1



-187-

NORMALIZATION AND COMPUTER NOTATION FOR COMPRESSIBLE LIQUID

Variable

U/Co

C/C o

R/R o

 /Ro/Co

H/Co2

P/a o

Po/ao

P_/ao

P_/O 0

B/a o

_/_o

C/G 0

r/Ro

Z/RoCo 2

u/C 0

C_/C o

c/C o

P/a o

t Co/R o

dt Co/R o

Normalized

Variable

U !

C'

aT

T'

H'

p,

PO '

p_,

B

CI

r

z

u

C '

e !

P

t !

dr'

Description

Bubble wall velocity

Sonic velocity in liquid at

wall

Bubble radius

Time

Enthalpy

Pressure in liquid at wall

Internal pressure

Variable pressure at infinity

Density at infinity

Parameter in equation of state

Liquid viscosity

Liquid surface tension

Radius in liquid

Characteristic quantity

Particle velocity of liquid

Sonic velocity at infinity

Sonic velocity in liquid

Pressure in liquid away from

wall

Time from start of character-

istic

Increment in time on charac-

teristic

Computer Pro-

_ram Notation

Y(1)

C

R

Y(2)

HI

P

PINT.(R,A, GAMMA)

PI .(R,X)

RHOII_

B

NJ

SIGMA

V(2)

Z

V(1)

ClNFSQ

CL

PL

TL

DELTL
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NORMALIZATION AND COMPUTER NOTATION FOR COMPRESSIBLE LIQUID (CONT'D)

Variable Normalized

Variable

Description Computer Pro-

_ram Notation

R i. Initial bubble radius R0
O

p_/a o p ' Initial pressure in liquid X

- Three dimensional array in

which characteristic curves

are stored OmV( ,M,T)

Internal function for storing

variables at bubble wall CHARAC.

Internal function for calcula-

ting wall pressure and printing

wall variables PRS.

Internal function for storing

values along characteristic

for later use STURV.

i •
i
J

o
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COIVII=U_]_RLISTING - COIvI_SSI;BT_ T'rC_LTID

$COMPILE MAD,PUNCH OBJECT,PRINT OBJECT,FULL DUMP

MAD (24 SEP 1964 VERSION) PROGRAM LISTING .........

NEW

INITAL

OVER

CONTINUE

FLAG=L

DIM(1)=3

DIM(2)=1

DIM(3)=5

DIM(4)=40

EXECUTE FTRAP.

READ DATAtMUtSIGMA_B_NtX,ROtINCRMT,GAHMA

EXI=(N-I.)/N

EX2=(N-I.)/(2.*N)

EX3=lo_N

EXECUTE SETRKD.(2tY(I)tF(I),Q(I),R_DELR)

KI=2.166634E4

K2=2.825187E-2/RO

KJ=.57_986/RO

K4=2.65843E-5/RO

R=I.

Y(I)=C.

Y{2)=..

DELR=-I°/INCRMT

PI=PINF.(R,X)+B

RHOINF=(PL/(B+I.)).P.EX]

J=I

CI_FS(Q=(_*PI)/(RHt]INF*KL)

PRINT FORMAT TA_HDI,MU,SIGMA_PINF.(R,X),RO,RHOINF

PRINT FORMAT TABHO2

TAGI=L

P=PIi_T.(RtA,GAMMA)-(2.*K2*SIGMA÷4.*K3*Y[I)*MU)/R

C=SQRT.(CINFSQ*((P+B)/P1).P.EXI)

HI=(PI/(KI*EXI*RHOI_F))*(((P+B)/PI).P.EXI-I.}

PRINT FORMAT OUTI,R,Y(1)/CtY(1),C.G,Y(2),P,HL,PINT.{RtAtGAMMA

),PINF.(R,X)

THROUGH INITALtFOR R=I.+DELRtDELR,TAGI.G.IC

PL=PINFo[R,X)+B

RHOINF=[PL/(B÷L.)).P.EX3

CI_FSQ=IN*PL)/(RHO[NF*KI)

p=PINT.[RtAtGAMMA}-(2.*K2*SIGMA÷4°*KJ*Y(L)*MU)/R

HI=(PI/IKI*EXI*RHOINF))*(((P+B)/PL}.P.EXL-I.)

C=SQRT.(CINFSQ*((P+B)/PI}.P.EX1)

Y(I)=-(2.*HI*ELOG.|R))°P..5

Y(2)=(R-I.)/Y(I)

F(I)={((Y(L)/2.)*(Y(I)-3°*C)*(HL/Y(L))*(Y(1)*C))/(C-Y(I))÷((P

I/(P+B)).P.EXJI(KI*C*RHOINF))*(R*DPINT.(R_A,GAMMA)÷PINT.(RtA,

GAMMA)-P))/(R+(4.*K4mMU/(C*RHOINF))*(PII(P+B))oP.EXJ)

PRINT FORMAT OUTItRtY(I)/CIY(I)tF(L)tY(2)_P,HItPINT.{R,A,GAMM

A)tPINF.(RtX)

TAGL=TAGL+L

CDNTINUE

PRINT FORMAT OUT2

TAGI=I

Y(1)=O.

R=L.+DELR

CONTINUE
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GOSUB

GO
LDC(1)

LOC(2)

LOC(3)

LOCI4)

PI=PINF.(R,X)+B

RHOINF=(P[/(B+I.)).P.EX3
CINFSQ=(NePI)/(RHOINF*KI)

P=PINT,(R,A,GAMMA)-(2.'K2tSIGMA÷4.-K3*Y(1).MU)/R
HI=(PI/(KI*EXI*RHOINF})m({(P÷B)/P£).P.EXI-1,)
C=SQRTo(CINFSQ*((P+B)/PI).P.EX[)
Y(I)=-(2,*HleELOG.(R)).P,.5
Y(2)=[R-I.)/Y(I)

F[I)=(IIYI1)/Z.}*(Y(1)-3.*C)+IH1/YI1})*(YIZ)+C))/IC-YII))+([p
ZI(P+B))-P*EX31(KImCmRHOINF))*(R*DPINT. IRtA,GAMMA)+PINT.IRtAt
GAMMA)-PJ)I{R+(4.wK4*MUI(C*RHDINF))*(PI/(P÷B)).P.EX3)
PRINT FORMAT OUTItRtY(1)/C,Y(1),F(1),Y(2)tP,HI,PINT.{RtAtGAMM
A)tPINF.(R,X)
TAGI=TAGI+I

WHENEVER TAGI.G.IO,TRANSFER TO GOSUB
TRANSFER TO OVER
CON[INUE
PRINT FORMAT OUT2

EXECUTE CHARAC.
I=3
TAGI=I

TAG3=1

TRANSFER TO LOC(RKD£Q.(C))
CONTINUE

P|=PINF.(R,X)÷B
RHOINF=(PI/(B+I.)).P.EX3

CINFSQ=(N*PI)/(RHOINF*K1)

P=PINT.(R,A,GAMMA)-(2.*K2*SIGMA+4.*K3*Y(1)*MU)/R
WHENEVER P.L.-3_C_.

M=5

TRANSFER TO FINISH
END OF CONDITIONAL

C=SQRT.(CINFSQ*((P+B)/P1).P.EXI)

HI=(PI/(KI*EXI*RHOINF))*(IIP+B)/PI).P.EXI-[.)
F{I)=I{{YII)/2.)_(Y{I)-3.*C)÷{HIIY{1}}*IY{I}+C))I(C-Y|£))_(Ip

I/(P+B)).PoEX3/(KI*C*RHOINF))*(R*DPINT.(R,A,GAMMA)÷PINT.IRtAt
GAMMA)-P))/(R+(4.*K4*MU/(C*RHOINF))*(PII{P÷B)).P.EX3)
F(2)=I./Y(I)
TRANSFER TO GO

CONTINUE

TRANSFER TO LOC(I)
WHENEVER TAG3.L.9

EXECUTE PRS.
TAG3=TAG3÷I

tRANSFER TO GO
END OF CONDITIONAL

PRINT FORMAT OUT2
EXECUTE PRS.

EXECUTE CHARAC.
I=4

TAGI=I
TAG3=I

TRANSFER TO GO

WHENEVER TAGI.L.IO
TAGI=TAGI+I

TRANSFER TO GO
OR WHENEVER TAGI.E.IO.AND.TAG3.L.9

EXECUTE PRS.
TAGI=I

TAG3=TAG3+I
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LOC(5)

LOCI6)

LOC(7)

TRANSFER TO GO

END OF CONDITIONAL

PRINT FORMAT OUT2

EXECUTE PRS,

EXECUTE CHARAC,

I=5

TAGI=_

TAG3=I

WHENEVER TAGI,L,IO0

TAGI=TAGI+I

TRANSFER TO GO

OR WHENEVER TAGI,E,IUO,ANO,TAG3,L,9

EXECUTE PRS,

EXECUTE CHARAC,

TAGI=I

TAG3=TAG3+I

TRANSFER TO GO

END OF CONDITIONAL

I=6

PRINT FORMAT OUT2

EXECUTE PRS,

EXECUTE CHARAC,

TAGI=I

TAG3=[

TRANSFER TO GO

WHENEVER F(II.L.O.,TRANSFER TO SLO(I)

WHENEVER TAGI,E,SOC,OR,TAGI,E,6C_,OR,TAGI,E,4OO,OR,TAGI,E,2CO

EXECUTE PRS,

EXECUTE CHARAC,

END OF CONDITIONAL

WHENEVER TAGI,L,ICO0

TAGI=TAGI+I

WHENEVER ,I,G,R+DELR,DELR=,I-R

TRANSFER TO GO

OR WHENEVER TAGI,_,IC=}_,A_D,TAG3,L,8

EXECUTE PRS.

EXECUTE CHARAC,

[AGI=I

TAG3=TAG3+[

WHENEVER .I.G.R+DELRtDELR=.I-R

TRANSFER TO GO

END OF CONDITIONAL

PRINT FORMAT OUT2

PRINT COMMENTS [[_E PRINTED AFTER TIM[ REACHES 134.! IS THE I

NCREASE IN TIME BEYOND /34._$

EXECUTE PRS.

EXECUTE CHARAC.

TAGI=I

TAG3=I

OELR=-I,/[NCRMT

I=7

TRANSFER TO GO

WHENEVER F(I),L,L,,TRANSFZR TO SLOiI)

WHENEVER TAGI.L.I_')

TAGI=TAGI+I

TRANSFER TQ GO

OR WHENEVER TAGI,E,I].:,ANO,TAG3,L,9

EXECUTE PRS,

EXECUTE CHARAC,

TAGI=I
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LOCP(4)

LOCP(5)
GOP([)

LOCP(3)
LOCP(1)

LOCP(2)

PRIN[ FURMAT OUTCH,SR(K),SP(K),SU(K),SU(KI/SC(K),ST(KItOELTL
TAG2=2
V(IJ=TEMVX

V(Z)=TEMV2
PL=TEMP
CL=TEMC
TL=TEMT

DELTL=V(2)/(TENeCL)
TRANSFER TO GOP(RKOEQ.(O))
FI1)=IZ*(CL+VI1))/V(Z)-Z.*CLeCLeV{1)I/(VI2)e(CL-V([)))
F(Z)=CL+V(1)
TRANSFER TO LOCP(RKDEQ.(O))

WHENEVER V(I).G.O..OR.{(ZIVIZ)-V(1)*V(1)I2.)*(N-I.)ICINFSQ÷I.
).L.C..OR°V(2).L.O.

V(1)=O.

V(2)=1.
TAGI=2

END OF CONDITIONAL

PL=PI*((Z/V(Z)-V(1)*V.(1)/2.)*(N-L.)/CINFSQ+I.).P.(N/(N-L°))-H
CL=SQRT. tCINFSQ*((PL÷B)/PI)°PoEX1)

FI1)=(Z*(CL+V(I))/V(2)-2.*CL*CL*V(1))/(V(2)*(CL-V(I)))
F(Z)=CL+V(1)

TRANSFER TO LOCP(3)
WHENEVER V(I).G.O..OR.{IZ/VI2)-V(1)*V(1)/Z.)*(N-I.)/CINFSQ÷I.

).L._..OR.V(2).L.G.,TAGI=2
WHENEVER TAGI.E.2

TEN=IO.*TEN

WHENEVER TEN. G.I.EZ5.0R.DELTL.L.I.E-25,TRANSFER TOPFIELD
TAGI=I
TRANSFER TO LOCP(4)
END OF CONDITIONAL

WHENEVER TAG2.LE.2_

PL=Pi*|(Z/V(2)-V(1)'V(1)/2.|*(N-Io)/CINFSQ÷L.).P.(N/(N-I.))-B
CL=SQRT.(CINFSQ*((PL+B)/PI}.P.EX1)

EXECUTE STURV.(K,TAG2)
PRINT FORMAT OUTCH,V(2),PL,V(1),V(1)/CL,TL,DELTL

TEMVL=V(1)
TEMV2=V(2)

TEMP=PL
TEMC=CL
TEMT=TL

DELTL=V(2)/(TEN*CL)
TAG2=TAG2+I

TRANSFER TO LOCP(5)
OR WHENEVER TAG2.LE.56.AND.TAG3.E.5

PL=PI*((Z/V{2)-V(1)*V(1)/2°}*(N-I.)/CINFSQ÷I°).P.(N/(N-I°))-B

CL=SQRT°(CINFSQ*((PL+B)/PI).P.EX1)
WHENEVER TAG2.LE.40,EXECUTE STURV.(K,TAG2)

PRINT FORMAT OUTCH,V(2),PL,VI1),V(1)/CL,TL,DELTL
TEMVI=V(1)

TEMV2=V(2)
TEMP=PL

TEMC=CL
TEMT=TL

DELTL=V(2)/(TEN*CL)
WHENEVER TAG2.E.56,TRANSFER TO PFIELD

TAG2=TAG2+[
TAG3=X

TRANSFER TO LOCP(5)
END OF CONDITIONAL
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LOC[8)

FINISH

TAG3:TAG3+I

WHENEVER .OI.G. R+DELR, DELR=.OI-R

TRANSFER TO GO

END OF CONDITIONAL

PRINT FORMAT OUT2

EXECUTE PRS.

EXECUTE CHARAC.

TAGI=I

TAG3=I

DELR=- i • / I NCRMT

I=8

THROUGH FINISH_FOR M:ItI_M.G.4

DELR=- I0..P. (-M-4)

TRANSFER TO GO

WHENEVER F(1).L.O.,TRANSFER TO SLO(1)

WHENEVER TAGI . L • I':)_)

TAGI=TAGL+I

WHENEVER lO..P. (-M-2).GoR+DELRtDELR=IG--Po(-M-2)-R

TRANSFER TO GO

OR WHENEVER TAGI.E.IC'O.AND.TAG3.L.9

EXECUTE PRS.

EXECUTE CHARAC.

TAGL:I

TAG3=TAG3+I

WHENEVER IO..P.(-M-2).G.R+DELRIDELR=IO--P-(-M-2)-R

TRANSFER TO GO

END OF CONDITIONAL

PRINT FORMAT OUT3yM+ItDELR/I_J.

WHENEVER M.E.2tPRINT COMMENTS TIME WHICH IS PRINTED AFTER R:I

X10-4 IS THE CHANGE IN TIME FOR PRINTED CHANGE IN BUBBLE RADI

US$

EXECUTE PRS.

EXECUTE CHARAC •

TAGI=I

TAG3=I

CONTINUE

EXECUTE SETRKD. (2, V(I) tF (I) ,Q( I ) t TL,DELTL)

THROUGH PFIELD,FOR K:I,I,K.E.J

PRINT FORMAT TABHDk,SR(K)

M=3

TAGI=I

TAG2=I

TAG3=1

TEN=I_.

TEMVI=SLI(K)

TEMV2=SR(K}

TEMP=SP(K)

TEMC=SC(K)

TEMT=_.O

TL=C.U

VI2)=SR(K)

PL=SP(K)

V[1)=SUIK)

CL=SC(K)

DELTL=SR(K)/(20.*SC(K))

PI=PINF.(SR(K)_X)+B

RHOINF:(PI/(B+I.)).P.EX3

CINFSQ:(N*PI)/(RHOINF*KI)

Z:SR(K}*(SH(K)+SU(K)*SU(K)/2.)

EXECUTE STURV.(K_I}
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I

PFIELD

PRT2

PRTI

PRT4

PRT5

PRT3

PRPRNT

TAG3=TAG3÷I

TRANSFER TO LOCP(5)

CONTINUE

THROUGH PRPRNT ,FOR K=LtI,K.E.J

PRINT FORMAT TABHD3pURV(K,I,I)tSR[K]

WHENEVER FLAG .G. I .AND. K .L. FLAG

PRI:WT FORMAT OUTPtURV(K,2_I)_URV(Kt3tl)tURV(K,4tI)tURV(K,5_I)

THROUGH PRTI,FOR L=K-lt-I_L.L.I

TIP=URV(L,L,I)

URV(L,ItI)=O.C

WHENEVER URV(K,I,I)-TIP.G.URV(L,I,4C)tTRANSFER IO PRTI

THROUGH PRT2,FOR M=2,1,M .G. 5

PT(M)=TAB.(URV(K,Itl)-TIP,URV(L,I_I)tURV(L,Mvl)_I,I_It43vSW(M

I ))

WHENEVER SWIM) .E. 2.,PT[M}=G.

CONTINUE

PRINT FORMAT OUTP,PT(2)...PT(5)

URV(L,I,I)=TIP

PRINT COMMENTS NO ADDITIONAL VALUES P(ISSIBLE,BUBBLE WALL HAS

1 NOT PROGRESSEn FAR ENOUGH.$

OR WHENEVER FLAG .G. I .AND. K .GE. FLAG

PRINT FORMAT OUrP,URV(K,2tI),URV(K,3_I),URV{Kt4_I]tURV{KtStl)

THROUGH PRT3,FOR L=K-I_-I,L.L.I

WHENEVER L .L. FLAG

TIP=URV(L,I,I)

URV(L,I,I) -_--me

FLGT=I34.÷URVIK,1,I)-TIP

WHENEVER FLGT .G. URV{LtI_4C)_TRANSFER TO PRT3

THROUGH PRT4,FOR M=2,1_M .G. 5

PT[M)=TAB.(FLGT,URV[L,I,1),URV(L,M,I),I,I,I,4G,SW(M))

WHENEVER SWIM) .E. 2.,PT(M)=C.

CONTINUE

OR wHENEVER L .GE. FLAG

TIP=URV(L,I,I)

URV(L,I,I)=L).

WHENEVER URVJK_I,I)-TIP.G.URVIL,I,4]),TRA_SFER TO PR13

THROUGH PRT5,FOR M=2_I,M .G. 5

PT(MI=T_B. IURVJK, I,I)-TIP,URV(L,I,I),URV(L,M, II,I,I,I_4C,SWIM

I ))

WHENEVER SW{M) .E. 2.,PT(M)=O.

CONTINUE

END OF CONDITIONAL

PRINT FORMAT OUTP,PT(2)...PT(5)

URV(L,I,I)=IIP

PRINT COMMENTS NO ADDITIONAL VALUES POSSIBLE,BUBBLE WALL HAS

1 NOT PROGRESSED FAR ENOUGH.$

END OF CONDITIONAL

CONTINUE

THROUGH PRT77FOR AODTL=.CC_I*URV(J-I_ltl)toOO_I*URV(J-Itltl)t

1 ADDTL.G° ._Oj55*URV(J-Iyltl)

PRINT FORMAT TABHD3_URV(J-I_Iyl)÷ADDTL_,3o9

THRnUGH PRTS,FOR L=J-lt-ltL .L. 1

WHENEVER L .L. FLAG

TIP=URV(L,I_[)

URV(L,I_I)=_._

FLGT=I34.+URV(J-I,I,I)+ADDTL-TIP

WHENEVER FLGT .G. URV(L,I,4_),TRANSFER TO PRT8

THROUGH PRTg,FUR M=2, I,M .G. 5

PT(M)=TAB.(FLGI_URV(L_I_I),URV(L,M_I),I,I_I,_v_SW[M))

WHE_EVER SW(M) -E. 2.,PTIM)=O.



PRTg

PRTIG

PRT8

PRT?

SLO(})

SLOC{6)

SLOC{4)

SLOCI5)

FRST(1)

SLOC{3}

SLOC{I)

CONTINUE

OR WHENEVER L .GE. FLAG

TIP=URVIL,} ,I)

URV(L,I,I)=']-;;,

WHF_.NIVER URV(J-I,I,I)+ADDTL-TIP.G.URV(L,I,AG),TRANSFER TO PRT

i B

THROUGH PRTIC,FOR M=2,I,M .G. 5

PT(M)=TAB. (URV(J-I,I,})+AODTL-TIP,URV(L,I,I),URV(L,M,I},I,I,I

I ,43,SW(M))

WHE_EVER SW(M) .E. 2.,PT(M)=_ _,.

CO_T I _UE

END OF CONDITIONAL

PRINT FORMAT OUTP,PT{2)...PT(5}

URV(L, I, I)=TIP

PRINT COMMENTI_ NO ADDITIONAL VALUES POSSIBLE,BUBBLE WALL HAS

I NOT PROGRESSED FAR ENOUGH.$

CONTINUE

TRANSFER TO NEW

CONTINUE

PRINT FORMAt OUT2

EXECUTE PRS.

EXECUTE CHARAC.

TAGI=I

TAG2=I

TAG3=I

TEN=I •

M=}

TEMYI=Y(I}

TEHY2=Y(2)

TEMR=R

DELR=-R/(10C.*TEN)

Y( I }=TEMYI

Y ( 2 ):TEMYZ

R=TEMR

DELR=-RI ( I:JZ.*TEN )

TRANSFER TO FRST{RKDEQ.()))

CONTINUE

PI=PINF.(R,X)÷B

RHOINF= (PI/(B+I.) ) .P.EX3

C INFSQ= ( N*P i )/ (RHO INF*K I )

P=PINT. (R,A,GAMMA)-(2.*K2*SIGMA÷4.*K3*Y(I)*MU)/R

WHENEVER P.L.-3C'CO •

M=5

TRANSFER TO FINISH

END OF CONDITIONAL

C=SQRT.(CINFSQ*({P÷B)/PI)-P.EXI}

HI=(PI/(KI*EXI*RHOINF) }*(((P+B)/PI).P.EXI-I.)

F(I)=(((Y(1)/2.)*(Y{I}-3-*C)+(HI/Y(1))*(Y(I}+C))/(C-Y(I})÷((P

I I/(P+B)).P.EX3/(KI*C*RHOINF) )I(R*DPINT.(R,A,GAMMA}+PINT.{RtA,

2 GAMMA)-P) )/{R+(4.*KA*MU/{C*RHOINF))*IPII(P+B)).P.EX3)

F{2)=I./Y(1)

TRANSFER TO SLOC(RKOEQ.{_))

WHENLVER Y(1).G.J.

Y(1)=O.

TAG3=2

END OF CONDITIONAL

PI=PINF.(R,X)+B

RHOINF=(PII(B+I.)).P.EX3

C I NFSQ = (N'_P I ) / {RHO INF*K } )

P=PI"IT. (R, A, C_AMMA}-{ 2 .*K2*S [ GMA÷4.*K3*Y ( i )*MU)/R
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Q

SLOCI2)

WHENEVER P.L.-3CCO.

M=5
TRANSFER TO FINISH

END OF CONDITIONAL

C=SQRT.(CINFSQ*[[P+B)/PI).P.EXX)

HI={PII(KI*EXI*RHOINF))*(((P+B)/P1).P.EXt-I.)
F[1)={{{Y(1)I2.)*{Y(1)-3.*C)+{HIIY(1))m{Y(1)+CI)I(C-Y(I))÷((p

i II(P+B)).P.EX31(KIeCmRHOINF))*(RoDPINT.(RtA,GAMMA)+PINT.[RtAt
2 GAMMA)-P])I[R÷(4°*K4*MUI[C*RHOINF))m(PLI{P÷B)).P.EX])

F{ZI=X./Y[II
TRANSFER TO SLOC(])

WHENEVER Y(X).G.O.,TAG3=2
WHENLVER TAG3.E.2

TEN=TEN*TO.
WHENEVER TEN .G*I.EZ5

PRINT RESULTS TENtRvDELR,Y[Z)vY[2]
M=5

TRANSFER TO FINISH

END OF CONDITIONAL
TAG3=1
TRANSFER TO SLOC(4)

END OF CONDITIONAL
WHENEVER TAGI.L.IO
TAG£=TAGI+I

OR WHENEVER TAGI°E.LO
EXECUTE PRS.
TAGI=I
TAG2=TAG2+I

END OF CONDITIONAL
WHENEVER R.LE.£.E-6

EXECUTE PRS.
M=5

TRANSFER TO FINISH
c n OF.N_ CONDITIONAL

WHE;_EVER TAGI.E.I°A_D.TAG2.L.I_.AND.J.L.98
EXECUTE CHARAC.

OR WHENEVER TAGZ.E.M.AND.J.L.98

EXECUTE CHARAC.
M=M+15

END OF CONDITIONAL

WHENEVER TAG2.LE.3UO
TRANSFER TO SLOC[6]

OR WHENEVER TAG2.G.3C3
M=5
TRANSFER TO FINISH

END OF CONDITIONAL

INTEGER TAGI,TAG2,TAG3,I,J,K,LtM,FLAG,O

DIME3SION Y(2),F{2),Q(2),VIZ),SUIICO},SR(IOO),ST(IOOI,SH(IOG)
I ,SP(IOO),SC(IO0)

DIMENSION URV{194_G,DIM{1)),DIM{4)

DIMENSION SW(5)tPT(5)
DIMENSION TIM(1;9)

VECTOR VALUES TABHDI=$1H1,Sg,92HSOLUTION OF GILMORE'S BUBBLE

1 WALL MOTION FOR COMPRESSIBLE,VISCOUS WATER WITH SURFACE TENSI
20NIIHj,S9,36HTHE NORMALIZED LIQUID PARAMETERS AREIIHO,S2O,25H

3 VISCOSITY MU =,IEIE.b,/IH ,S20,25HSURFACE TENSION
SIGMA=,IEIE.6/IH ,S20,25HPRESS. AT INFINITY PINE=,IEIE.61

5 IH ,S20,25HINITIAL RADIUS {MILS) RO=,XEIE.611H ,S20,25HDENSIT
6 Y AT INF. RHOINF=,IEI5.6*$

VECTOR VALUES TABHD2=$1H-tS7,4HR/ROtSg,8HMACH NO.,STtBHVELOCI



TIPPO

i TYtS8t5HDUIDR_S9 t4HTIMEtSLI_8HPRESSURE_ST_8HENTHALPYtS6t8HIN

2 T.PRS.tS9t5HPINF.*$

VECTOR VALUES TABHD3=$1HI_S3tTOHPRESSURE AND VELOCITY FIELDS

I IN THE LIQUID WHEN THE NORMALIZED TIME IS,IEI5.8t26H AND THE

2 BUBBLE RADIUS IS,IEI3.&/IH-,SI2,L4HLIQ. RADIUS/RO,S3_X2HLIQU

3 ID PRES.tS2,I3HLIQ. VELOCITYtS5t8HMACH NO.*$

VECTOR VALUES TABHO4=$1HI,S3,8GHPATH OF A CHARACTERISTIC STAR

I TING FROM THE BUBBLE WALL WHEN THE BUBBLE RADIUS IStEIT.811H-

2 ,SII,14HLIQ. RAOIUS/ROtS4II2HLIQUID PRESo,S2_I3HLIQ. VELOCITY

3 ,S5,8HMACH NO.,Sg,4HTIME,SI:tIOHDELTA TIME*$

VECTOR VALUES OUTI:$1H ,EI4.6,3EI5.6,ELS.8,3EIS.6,EI2.S*$

VECTOR VALUES OUT2=$IHO*$

VECTOR VALUES OUTB=$1H /IH ,SIO,2HM=,I3tSHDELR:,EIB.6/*$

VECTOR VALUES OUTP=$1H _S8,EIS.B,BEI5.6_$

VECTOR VALUES OUTCH=$1H ,SI_,EI5.8,BEI5.6,EI7.8_EIS.6e$

INTERNAL FUNCTION

ENTRY TO CHARAC.

SU(J)=Y(1)

SH(J)=HI

SR(J)=R

SP(J)=P

SC(J)=C

WHENEVER J.L. 80

ST(J)=Y(2)

TIM(J)=ST(J)

OR WHENEVER J.GE.8U

TIP={R-SR{J-I))IY(I)

TIM(J)=TIP

THROUGH TIPPO,FOR O=J-it-l_O.L.T9

TIP=TIP+TIM(O)

CONTINUE

ST(J)=TIP

END OF CONDITIONAL

J=J+I

FUNCTION RETURN

END OF FUNCTION

INTERNAL FUNCTION

ENTRY TO PRS.

WHENEVER Y(2) .G. L34.

Y(Z)=Y(2)-I34.

FLAG=J

END OF CONDITIONAL

PI=PINF.(R,X)+B

RHOINF={PII(B+I.)).P.EX3

CINFSQ={N*PI)/(RHOINF*KI)

P=PINT.(R,A,GAMMA)-(2.*K2*SIGMA+4.*K3*Y{1)*MU)/R

HI={PI/(KI*EXI*RHOINF))*(((P+B)/PI).P.EXI-I.)

C=SQRT.(CINFSQ*((P+B)/PI).P.EXI)

F{I)=(((Y(1)/2.)*{Y(1)-3.*C)+{HI/Y(1))*(Y(1)+C))/(C-Y{I))+((P

I I/(P+B)).P.EX3/(KI*C*RHOINF))*(R*DPINT.(R,A,GAMMA)÷PINT.(R_A_

2 GAMMA)-P))/(R+(4.*K4*MU/(C*RHOINF))*(PI/(P+B)).P.EX3)

WHENEVER R .G. .99E-4

PRINT FORMAT OUTI,R,Y(I)/C,Y(I)_F(L)tY(2)tP,HI,PINT.(R,AtGAMM

I A),PINF.(R,X)

OR WHENEVER R .L- .ggE-4

PRINT FORMAT OUTltR_Y(1)/C_Y(1)tF(I)t(R-SR(J-I))/Y(1)tPtHItPI

I NT.(R,AtGAMMA),PINF.(R_X)

END OF CDNDITIONAL

FUNCTION RETURN

END OF FUNCTION
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INTERNAL FUNCTION (K_TAG2)

ENTRY TO STURV.

WHENEVER TAG2.E. I_URV(KtttTAG2I=STIK)

NHENEVER TAGZ °G. lfURV(KtltTAG2)=TL

URVIK,Z,TAG2)=V(2)

URVIKe3tTAG2)=PL

URVIKt6tTAG2I=V(ll

URVIKtS,TAGZI=V(1L/CL

FUNCTION RETURN

END OF FUNCTION

END OF PROGRAH

THE FOLLOWING NAMES HAVE OCCURRED ONLY ONCE IN THIS PROGRAM.

COMPILATION WILL CONTINUE-

EX2

e689

e690

e_91

e692

e693

e69_

e_95

e696

e49T

e_98

e699

THE FIRST OCCURRENCE OF A FLOATING POINT VARIABLE USED AS A SINGLE OR DOUBLE SUBSCRIPT WAS IN THE STATEMENT ENDING

GO TRANSFER TO LOC(RKDEQo(O)) 069
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$COMPILE MAD,PRInT OBJECT_PUNCH OBJECT

MAD (24 SEP 1964 VERSION) PROGRAM LISTING .........

EXTERNAL FUNCTIflN(R,A,GAMMA)

ENTRY TO PINT.

FUNCTION RETUR_ A*(R.P.(-3*GAMMA))

ENTRY TO OPINT.

FUNCTION RETURN -3.*GAMMA*A/{R.P.(3.*GAMMA+I.))

END OF FUNCTION
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$COMPILE MAD,PRINT OBJECT,PUNCH OBJECT

MAD (24 SEP 1964 VERSION) PROGRAM LISTING .........

EXTERNAL FUNCTION(R,X)
ENTRY TO PINF.
FUNCTION RETURN X

END OF FU4CTIDN
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